•  
  •  
 

Abstract

Background. Fuel can emit lead heavy metal into the air and will fall to the ground and accumulate in the soil or water. Soil has the ability to retain most of the harmful elements it contains in a long time. Planting water spinach on the edge of a road that is heavily traversed by vehicles will affect lead levels in water spinach due to the absorption of lead from the environment. This study aims to estimate the level of health risk of water spinach farmers due to ingestion of lead in water spinach grown in Sukapura District, North Jakarta. Methods. The method of this research is Environmental Health Risk Assessment of water spinach consumption in 25 farmers. Results. The average concentration of lead in water spinach is 1.54 mg/kg. This value has exceeded BPOM standard No. 23/2017 which is 0.2 mg/kg. The results of real time intake are 0,00026 mg/kg/day with an average duration of exposure of 21.08 years, body weight of 60 kg, and frequency of exposure 53 days/year. Conclusions. RQ value of 0.15 (RQ) indicates that water spinach is still safe for consumption.

References

  1. Agency for Toxic Substances and Disease Registry. (2007). Toxicological Profile for Lead. Atlanta: U.S Department of Health and Human Services.
  2. Casas, J. S., & Cordo, J. (2006). Lead: Chemistry, Analytical Aspects, Environmental Impact and Health Effects. Amster dam: Elsevier.
  3. Christoforidis, A., & Stamatis, N. (2009). Heavy Metal Contamination in Street Dust and Roadside Soil Along the Major National Road in Kavala's Region Greece. Geoderma, 151, 257-263.
  4. Das, R., Mohtar, A., & Rakshit, D. (2018). Sources of Atmospheric Lead (Pb) in and around an Indian Megacity. Atmospheric Environment, 193, 57-65.
  5. Gusnita, D. (2012). Pencemaran Logam Berat Timbal (Pb) di Udara dan Upaya Penghapusan Bensin Bertimbal. Berita Dirgantara, Jurnal Lapan, 13, 95- 101.
  6. Harmanescu, M., Alda, L. M., Bordean, D. M., Gogoasa, I., & Gergen, I. (2011). Heavy Metal Health Risk Assesssment for Population Via Consumption of Vegetables Grown in Old Mining Area; A Case Study: Banat County, Romania. Chemistry Central Journal, 5(64).
  7. Irfandi, A., Ashar, T., & Chahaya, I. (2014). Analisis Kandungan Kadmium dan Timbal Pada Air Sumur Gali Penduduk di Sekitar Industri Daur Ulang Aki dan Gangguan Kesehatan Pada Masyarakat Desa Bandar Khalipah Kabupaten Deli Serdang Tahun 2013. Lingkungan dan Kesehatan Kerja, 3(2).
  8. Keiko, H. (2006). Review of Lead Phase Out of Air Quality Improvement in the Third World Cities: Lessons from Thailand and Indonesia. Studies in Regional Science, 36(2), 527-541.
  9. Khan, S., Cao, Q., Zheng, Y., Huang, Y., & Zhu, Y. (2008). Health Risks of Heavy Metals in Contaminated Soils and Food Crops Irrigated With Wastewater in Beijing, China. Environmental Pollution, 152, 686-692.
  10. Kohar, I., Hardjo, P., Jonatan, M., & Agustanti, O. (2004). Studi Kandungan Logam Pb Dalam Batang dan Daun Kangkung (Ipomoea reptans) Yang Direbus Dengan Penambahan NaCl dan Asam Asetat. Makara Sains, 8(3), 85-88.
  11. Kohar, I., Hardjo, P. H., & Lika, I. I. (2005). Studi Kandungan Logam Pb Dalam Tanaman Kangkung Umur 3 dan 6 Minggu yang Ditanam di Media yang Mengandung Pb. Makara Sains, 9(2), 56-59.
  12. Laila, N. N., & Shofwati, I. (2013). Kadar Timbal Darah dan Keluhan Kesehatan Pada Operator Wanita SPBU. Jurnal Kesehatan Reproduksi, 4(1), 41-49.
  13. Lucho-Contantino, Alvarez-Suarez, Beltran-Hernadez, Prieto-Garcia, & Poggi-Varaldo. (2005). A Multivariate Analysis of The Accumulation and Fractionation of Major and Trace Elements in Agricultural Soils in Hidalgo State, Mexico Irrigated With Wastewater. Environmental International, 31, 313- 323.
  14. Mahawati, E. (2011). Faktor-Faktor Risiko Paparan Pb Pada Polisis Lalu Lintas di Semarang Barat. Jurnal VISIKES, 10(2), 130-137.
  15. Massas, I., D, K., C, E., & D, G. (2013). Total and Available Heavy Metal Concen trations in Soils of the Thriassio Plain (Greece) and Assessment of Soil Pol lution Indexes. Environmental Moni toring and Assessment, 185(8), 6751- 6766.
  16. Modrewszka, B., & Wyszkowski, M. (2014). Trace Metal Content in Soils Along the State Road 51 (Northeastern Poland). Environmental Monitoring As sessement, 186(4), 2589-2597.
  17. National Research Council. (1976). Fuels and Fuel Additives for Highway Vehicles and Their Combustion Products. Washington DC: National Academy of Sciences.
  18. Pacyna, J. M., Pacyna, E. G., & Aas, W. (2009). Change of Emission Atmos pheric Deposition of Mercury, Lead and Cadmium. Atmospheric Environment, 43, 117-127.
  19. Palar, H. (2004). Pencemaran dan Toksikologi Logam Berat. Jakarta: Rineka Cipta.
  20. Rahman, A. (2017). Buku Rancangan Pengajaran Analisis Risiko Kesehatan Lingkungan. Depok: Universitas Indonesia.
  21. World Health Organization. (2011). Lead in Drinking Water. Geneva: World Health Organization.

Bahasa Abstract

Latar Belakang. Bahan bakar minyak dapat mengemisikan logam berat timbal ke udara dan akan jatuh mengikuti gaya gravitasi dan terakumulasi di tanah atau air. Tanah memiliki kemampuan untuk mempertahankan sebagian besar unsur berbahaya yang dikandungnya dalam waktu lama. Penanaman kangkung di pinggir jalan raya yang padat dilalui kendaraan bermotor akan berpengaruh terhadap kadar timbal di tanaman kangkung akibat penyerapan logam berat timbal dari lingkungan. Penelitian ini bertujuan untuk mengestimasi tingkat risiko kesehatan petani kangkung akibat pajanan timbal secara ingesti di kangkung yang ditanam di Kelurahan Sukapura, Jakarta Utara. Metode. Metode penelitian ini adalah Analisis Risiko Kesehatan Lingkungan terhadap pola konsumsi kangkung pada 25 orang petani. Hasil. Rata-rata konsentrasi timbal dalam kangkung adalah 1,54 mg/kg. Nilai ini telah melebihi standar BPOM No 23/2017 yaitu 0,2 mg/kg. Hasil nilai asupan (intake) realtime adalah sebesar 0,00026 mg/kg/hari dengan rata-rata durasi pajanan selama 21,08 tahun, berat badan 60 kg, dan frekuensi pajanan 53 hari/tahun. Simpulan. Nilai RQ sebesar 0,15 (RQ

Share

COinS