•  
  •  
 

Abstract

Composite flour blends prepared from cereals, millets, tubers, legumes, and vegetables have gained increasing attention due to their potential to enhance nutritional quality, improve functional properties, and support sustainable food systems. Previous studies have largely focused on individual nutritional or functional attributes, with limited integration of environmental and health perspectives. This review aimed to systematically analyze how composite flours simultaneously influence nutritional quality, functional performance, health relevance, and environmental sustainability within a unified analytical framework. A systematic literature review was conducted following PRISMA guidelines. Peer-reviewed studies published between 2014 and 2025 were retrieved from PubMed, Scopus, Web of Science, and Google Scholar. Inclusion criteria covered composite flours formulated from cereals, millets, legumes, tubers, and vegetables, reporting nutritional, functional, health-related, or environmental outcomes. Studies focusing solely on single flours, non-peer-reviewed sources, or incomplete data were excluded. A total of 73 studies met the inclusion criteria and were synthesized thematically. Among the reviewed studies, 68% reported improvements in protein quality through amino acid complementation, 55% indicated increased dietary fiber composition, and 47% demonstrated enhanced functional properties such as water absorption, emulsification, and dough stability. Millet- and legume-based composites consistently exhibited lower glycemic potential and higher micronutrient density, supporting theoretical expectations related to metabolic health and functional performance. Additionally, the use of climate-resilient crops and food by-products aligned with sustainability theories by reducing dependence on water-intensive cereals and promoting biodiversity. Overall, the findings indicate that composite flours represent a viable strategy to improve dietary diversity, enhance functional food quality, and support sustainable agriculture. Their integration into public nutrition programs, school feeding initiatives, and industrial food applications can contribute to improved health outcomes and climate-resilient food systems.

References

Adepeju, A. B., Aluko, D. M., Olugbuyi, A. O., Oyinloye, A. M., & Adeniran, O. O. (2024). Assessment of mineral content, techno-functional properties and colour of an extruded breakfast cereals using yellow maize, sorghum and date palm. Heliyon, 10(6). https://doi.org/10.1016/j.heliyon.2024.e27650

Acheampong, R., Osei Tutu, C., Amissah, J. G. N., Danquah, A. O., & Saalia, F. K. (2024). Physicochemical and sensory characteristics of a breakfast cereal made from sprouted finger millet-maize composite flour. Cogent Food & Agriculture, 10(1), 2363003. https://doi.org/10.1080/23311932.2024.2363003

Aderinola, T. A., Makinwa, O. J., & Aderehinwo, O. M. (2023). Proximate composition, functional and bioactive properties of cassava, garden egg and sorghum residue composite flours. Food and Humanity, 1, 1576-1583. https://doi.org/10.1016/j.foohum.2023.11.009

Akeem, S. A., Mustapha, B. O., Ayinla, R. O., Ajibola, O., Johnson, W. O., & Akintayo, O. A. (2023). Physical characteristics, nutritional composition and acceptability of gluten-free crackers produced from germinated pearl millet (Pennisetum glaucum), defatted-sesame seed (Sesamum indicum) and defatted-tigernut (Cyperus esculentus) composite flours. Discover Food, 3(1), 22. https://doi.org/10.1007/s44187-023-00063-7

Alim, M. A., Abedin, M. Z., Al Reza, M. S., Huq, A. O., Bari, L., Esrafil, M., & Zubair, M. A. (2024). Development and characterization of composite wheat flour incorporated with psyllium husk (Plantago ovata) and peanut (Arachis hypogea) and sensory properties of composite flour noodles. Food and Humanity, 2, 100279. https://doi.org/10.1016/j.foohum.2024.100279

Amadeu, C. A. A., Martelli, S. M., & Vanin, F. M. (2024). Nutritional aspects of composite flours for baked and extruded products: A review. Cereal Chemistry, 101(3), 450-467. https://doi.org/10.1002/cche.10765

Amankwah, N. Y. A., Agbenorhevi, J. K., & Rockson, M. A. (2022). Physicochemical and functional properties of wheat-rain tree (Samanea saman) pod composite flours. International Journal of Food Properties, 25(1), 1317-1327. https://doi.org/10.1080/10942912.2022.2077367

Anberbir, S. M., Satheesh, N., Abera, A. A., Kassa, M. G., Tenagashaw, M. W., Asres, D. T., ... & Yehuala, T. F. (2024). Evaluation of nutritional composition, functional and pasting properties of pearl millet, teff, and buckwheat grain composite flour. Applied Food Research, 4(1), 100390. https://doi.org/10.1016/j.afres.2024.100390

Arepally, D., Reddy, R. S., Coorey, R., & Goswami, T. K. (2023). Evaluation of functional, physicochemical, textural and sensorial properties of multi-millet-based biscuit. International Journal of Food Science and Technology, 58(5), 2437-2447. https://doi.org/10.1111/ijfs.16381

Ashwini, A., Prashanth, S. J., Jammanakatti, S. V., & Nayak, S. (2022). Quality attributes of composite flour of white finger millet (Eleusine coracana) and wheat (Triticum aestivum) for bread dough preparation. Journal of Postharvest Technology, 10, 42-58. https://www.journals.acspublisher.com/index.php/jpht/issue/view/751

Asouzu, A. I., Oly-Alawuba, N. M., & Umerah, N. N. (2020). Functional properties and chemical composition of composite flour made from cooking banana (Musa paradisiaca) and yellow maize (Zea mays). Research Journal of Food and Nutrition, 4(2), 6-12. http://dx.doi.org/10.22259/2637-5583.0402002

Awolu, O. O., & Oseyemi, G. F. (2016). Physicochemical and rheological properties of optimised cocoyam-based composite flour comprising cassava starch. Acta Universitatis Cinbinesis, Series E: Food Technology, 20(2). https://doi.org/10.1515/aucft-2016-0016

Awolu, O. O., Ifesan, B. O. T., & Osemeke, R. O. (2015). Antioxidant, functional, and rheological properties of optimized composite flour, consisting wheat and amaranth seed, brewers’ spent grain, and apple pomace. Journal of Food Science and Technology, 53(2), 1151-1163. https://doi.org/10.1007/s13197-015-2121-8

Ayo-Omogie, H. N. (2023). Unripe banana and defatted sesame seed flours improve nutritional profile, dietary fibre, and functional properties of gluten-free sorghum cookies. Food Production, Processing and Nutrition, 5(1). https://doi.org/10.1186/s43014-023-00147-y

Banu, M. T., Kaur, J., Bhadariya, V., Singh, J., & Sharma, K. (2021). Role of consumption of composite flour in management of lifestyle disorders. Plant Archives (09725210), 21(2). http://dx.doi.org/10.51470/PLANTARCHIVES.2021.v21.no2.033

Bhatt, S. M., & Gupta, R. K. (2015). Bread (composite flour) formulation and study of its nutritive, phytochemical and functional properties. Journal of Pharmacognosy and Phytochemistry, 4(2), 254-268. https://www.phytojournal.com/vol4Issue2/Issue_Jul_2015/4-3-18.1.pdf

Cayres, C. A., Ascheri, J. L. R., & Couto, M. A. P. G. (2021). Evaluation of nutritional characteristics and consumers’ acceptance of gluten-free sweet biscuits made from rice-based pregelatinized composite flours containing orange pomace and soy protein isolate. SN Applied Sciences, 3, 1-13. https://doi.org/10.1007/s42452-021-04209-z

Chandra, S., Singh, S., & Kumari, D. (2015). Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. Journal of food science and technology, 52, 3681-3688. https://doi.org/10.1007/s13197-014-1427-2

Chandrasekara, A. (2019). Roots and tubers as functional foods. In J.-M. Mérillon & K. G. Ramawat (Eds.), Bioactive molecules in food (Reference Series in Phytochemistry, pp. -). Springer. https://doi.org/10.1007/978-3-319-78030-6_37

Chandrasekara, A., & Josheph Kumar, T. (2016). Roots and tuber crops as functional foods: a review on phytochemical constituents and their potential health benefits. International journal of food science, 2016(1), 3631647. https://doi.org/10.1155/2016/3631647

Chaudhary, V., Grag, A. P., & Kumar, U. (2024). Physical, Nutritional, Textural and Sensory Properties of Wheat Bread Supplemented with Soybean: Finger Millet and Flax Seeds flour. European Journal of Nutrition and Food Safety, 16(5), 80-92. https://dx.doi.org/10.9734/ejnfs/2024/v16i51424

Chiedu, U. C., Abiodun, M. S., Steve, I. O., Eguono, E. E., & Joy, A. T. (2023). Physicochemical, nutritional and functional properties of composite flour blends from whole wheat, sweet potato, defatted peanut and rice bran. European Journal of Nutrition & Food Safety, 15(12), 41-55. https://doi.org/10.9734/ejnfs/2023/v15i121366

Compaore-Sereme, D., Hama-Ba, F., Tapsoba, F. W. B., Manner, H., Maina, N. H., Dicko, M. H., & Sawadogo-Lingani, H. (2023). Production and sensory evaluation of composite breads based on wheat and whole millet or sorghum in the presence of Weissella confusa A16 exopolysaccharides. Heliyon, 9(3). https://doi.org/10.1016/j.heliyon.2023.e13837

Cormick, G., Betran, A. P., Romero, I. B., García‐Casal, M. N., Perez, S. M., Gibbons, L., & Belizán, J. M. (2021). Impact of flour fortification with calcium on calcium intake: A simulation study in seven countries. Annals of the New York Academy of Sciences, 1493(1), 59-74. https://doi.org/10.1111/nyas.14550

Divakar, S. A., & Prakash, J. (2021). Nutritional and Bioactive Properties of Foxtail Millet Based Composite Flour. Indian Journal of Nutrition, 8(1), 223. https://www.opensciencepublications.com/wp-content/uploads/IJN-2395-2326-8-220.pdf

Doğruer, I., & Özen, F. B. (2023). Techno-functional properties of bakery products containing legume and nut flours (Master’s thesis). Izmir Institute of Technology. https://hdl.handle.net/11147/13943

Dutta, M., Nagesh, C. R., Laishram, R., Sushmitha, J., Shukla, A., Goswami, S., Prashat G, R., Vinutha, T. (2024). The flour of the future: Millet-based composite flour. Ecofarming, 4(2). https://ecofarming.rdagriculture.in/wp-content/uploads/2024/06/33.-The-Flour-of-the-Future-Millet-Based-Composite-Flour.pdf

Ehis-Eriakha, C. B., Oleghe, P. O., & Akharaiyi, F. C. (2025). Enhancing Food Security and Nutrition Through Indigenous Agro-Product-Based Functional Foods: A Case Study on Composite Flour Development. Proceedings, 118(1), 4. https://doi.org/10.3390/proceedings2025118004

Eid, W. A., Abdelgalil, Z. A., Abd-Elsattar, H. H., Bakry, A. M., Tian, H., Huang, J., ... & Hamed, Y. S. (2025). Evaluation of the Quality of Wheat and Millet Composite Flour and Application for Production Biscuits Fortified with White Sweet Potato Flour. Food Analytical Methods, 1-13. https://doi.org/10.1007/s12161-024-02739-x

Ekunseitan, O. F., Adebowale, A.-R. A., Kajihausa, O. E., Adegunwa, M. O., Sanni, S. A., Omemu, A. M., Sobukola, O. P., Keith, T., Obadina, A. O., & Sanni, L. O. (2016). Nutritional composition, functional, and pasting properties of wheat, mushroom, and high-quality cassava composite flour. Journal of Food Processing and Preservation, 41(5), e13150. https://doi.org/10.1111/jfpp.13150

Farooq, M., Rehman, A., Wahid, A., & Siddique, K. H. (2021). Physiology of grain development in cereals. Handbook of plant and crop physiology (pp. 246-260). CRC Press. https://doi.org/10.1201/9781003093640-19

Fetriyuna, F., Purwestri, R. C., Susandy, M., Köhler, R., Jati, I. R. A., Wirawan, N. N., & Biesalski, H. K. (2021). Composite flour from indonesian local food resources to develop cereal/tuber nut/bean-based ready-to-use supplementary foods for prevention and rehabilitation of moderate acute malnutrition in children. Foods, 10(12), 3013. https://doi.org/10.3390/foods10123013

Feyera, M., Dasa, F., & Kebero, K. (2021). Formulation and quality evaluation of finger millet based composite food products. International Journal of Nutrition and Food Sciences, 10(3), 59-65. http://dx.doi.org/10.11648/j.ijnfs.20211003.11

Forsido, S. F., Welelaw, E., Belachew, T., & Hensel, O. (2021). Effects of storage temperature and packaging material on physico-chemical, microbial and sensory properties and shelf life of extruded composite baby food flour. Heliyon, 7(4). https://doi.org/10.1016/j.heliyon.2021.e06821

Gopalakrishnan, L., Doriya, K., & Kumar, D. S. (2016). Moringa oleifera: A review on nutritive importance and its medicinal application. Food science and human wellness, 5(2), 49-56. https://doi.org/10.1016/j.fshw.2016.04.001

Hasmadi, M., Noorfarahzilah, M., Noraidah, H., Zainol, M. K., & Jahurul, M. H. A. (2020). Functional properties of composite flour: A review. Food Research, 4(6), 1820-1831. https://doi.org/10.26656/fr.2017.4(6).419

Jacob, J., Krishnan, V., Antony, C., Bhavyasri, M., Aruna, C., Mishra, K., ... & Visarada, K. B. (2024). The nutrition and therapeutic potential of millets: an updated narrative review. Frontiers in nutrition, 11, 1346869. https://doi.org/10.3389/fnut.2024.1346869

Jenfa, M. D., Adelusi, O. A., Aderinoye, A., Coker, O. J., Martins, I. E., & Obadina, O. A. (2024). Physicochemical compositions, nutritional and functional properties, and color qualities of sorghum-orange‐fleshed sweet potato composite flour. Food Science & Nutrition, 12(4), 2364-2378. https://doi.org/10.1002/fsn3.3922

Jesulagba, T. J., Andrea, D., Abiodun, Z. A., Ogheneovo, O., & Abdulsalam, A. (2024). Cost evaluation of bread production from composite of wheat flour and corn flour. Asian Journal of Food Research and Nutrition, 3(1), 190-201. https://journalajfrn.com/index.php/AJFRN/issue/view/9

Jia, R., Cui, C., Gao, L., Qin, Y., Ji, N., Dai, L., ... & Sun, Q. (2023). A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydrate Polymers, 321, 121260. https://doi.org/10.1016/j.carbpol.2023.121260

Kakar, A., Miano, T. F., Soomro, A. H., Yar, A., Memon, S. A., & Khan, B. (2022). Oil and water absorption capacity of wheat, rice and gram flour powders. International Journal of Ecosystems & Ecology Sciences, 12(2). http://dx.doi.org/10.31407/ijees12.232

Kaushik, N., Yadav, P., Khandal, R. K., & Aggarwal, M. (2021). Review of ways to enhance the nutritional properties of millets for their value‐addition. Journal of Food Processing and Preservation, 45(6), e15550. https://doi.org/10.1111/jfpp.15550

Lin, T., Fan, G., Zhou, Z., & Xie, C. (2023). Production of Foxtail‐Millet‐Based Composite Antioxidant Nutritive Flour Using Coarse Grains and Fruit Flour. Journal of Food Processing and Preservation, 2023(1), 6447991. https://doi.org/10.1155/2023/6447991

Lohan, A., Kaushik, R., Bansal, V., & Gandhi, K. (2020). Flax seeds and finger millet enriched functional rusk. International Journal of Food Studies, 9(1). https://doi.org/10.7455/ijfs/9.1.2020.a7

Ma, K. K., Greis, M., Lu, J., Nolden, A. A., McClements, D. J., & Kinchla, A. J. (2022). Functional performance of plant proteins. Foods, 11(4), 594. https://doi.org/10.3390/foods11040594

Marta, H., Febiola, C., Cahyana, Y., Arifin, H. R., Fetriyuna, F., & Sondari, D. (2023). Application of composite flour from indonesian local tubers in gluten-free pancakes. Foods, 12(9), 1892. https://doi.org/10.3390/foods12091892

Meena, S., Dunkwal, V., & Goyal, M. (2018). Nutrient analysis of the developed low glycemic composite flour for the effective management of diabetes. Food Science Research Journal, 9(1), 1-6. http://dx.doi.org/10.15740/HAS/FSRJ/9.1/1-6

Mohammed Ali, I., Forsido, S. F., & Kuyu, C. G. (2024). Nutritional quality and functional properties of finger millet, sweet potato, and soybean composite flour as affected by blending ratios. Discover Food, 4(1), 135. https://doi.org/10.1007/s44187-024-00212-6

Moreno-Araiza, O., Boukid, F., Suo, X., Wang, S., & Vittadini, E. (2023). Pretreated green pea flour as wheat flour substitutes in composite bread making. Foods, 12(12), 2284. https://doi.org/10.3390/foods12122284

Ndagire, C. T., Muyonga, J. H., Manju, R., & Nakimbugwe, D. (2015). Optimized formulation and processing protocol for a supplementary bean‐based composite flour. Food Science & Nutrition, 3(6), 527-538. https://doi.org/10.1002/fsn3.244

Ndunge Charles, A., Mburu, M., Njoroge, D., & Zettel, V. (2024). Chemical composition and consumer acceptability of oyster mushroom and sorghum-pearl millet based composite flours. Discover Food, 4(1), 152. https://doi.org/10.1007/s44187-024-00219-z

Noorfarahzilah, M., Lee, J. S., Sharifudin, M. S., Mohd Fadzelly, A. B., & Hasmadi, M. (2014). Applications of composite flour in development of food products. International Food Research Journal, 21(6). http://www.ifrj.upm.edu.my/

Offia-Olua, B., Okakpu, K., Okakpu, C., Onwuzuruike, U., & Okafor, O. D. (2024). Evaluation of Physicochemical and Sensory Properties of Composite Flour from Cocoyam and Mungbean and Their Fufu-Like Products: Composite Flour from Cocoyam and Mungbean. Jurnal Bio-Geo Material Dan Energi, 4(2), 48-63. https://doi.org/10.22437/jbigme.v4i2.33762

Ohimain, E. I. (2014). The prospects and challenges of composite flour for bread production in Nigeria. Global Journal of Human-Social Science, 14(3), 1-11. https://socialscienceresearch.org/index.php/GJHSS/article/view/1197

Oshins, C., Michel, F., Louis, P., Richard, T. L., & Rynk, R. (2022). The composting process. The composting handbook (pp. 51-101). Academic Press. https://doi.org/10.1016/B978-0-323-85602-7.00008-X

Palamthodi, S., Shimpi, S., & Tungare, K. (2021). A study on nutritional composition and functional properties of wheat, ragi and jackfruit seed composite flour. Food Science and Applied Biotechnology, 4(1), 63-75. https://doi.org/10.30721/fsab2021.v4.i1.107

Paucean, A., Dulf, F. V., Alexa, E., Man, S. M., Mureșan, V., Moldovan, O. P., Socaci, S. A., Muste, S., & Mureșan, A. E. (2018). Folic acid, minerals, amino acids, fatty acids, and volatile compounds of green and red lentils. Folic acid content optimization in wheat-lentils composite flours. Chemistry Central Journal, 12(1). https://doi.org/10.1186/s13065-018-0456-8

Prihayati, D. A., & Purwani, E. (2024). The Effect of Composite Flour Composition (Sorghum, Mocaf, and Wheat) on the Elongation, Tensile Strength, and Acceptance of Noodles. Engineering Proceedings, 63(1), 17. https://doi.org/10.3390/engproc2024063017

Rani, R. L., & Jamuna, K. V. (2023). Optimisation of Indian flatbread from herbal enriched wheat based composite flour and its nutrient evaluation. Pharmaceutica Analytica Acta, 12, 2369-2375. http://www.thepharmajournal.com/

Romani, S., Tappi, S., Balestra, F., Rodriguez Estrada, M. T., Siracusa, V., Rocculi, P., & Dalla Rosa, M. (2015). Effect of different new packaging materials on biscuit quality during accelerated storage. Journal of the Science of Food and Agriculture, 95(8), 1736-1746. https://doi.org/10.1002/jsfa.6888

Sibian, M. S., & Riar, C. S. (2020). Formulation and characterization of cookies prepared from the composite flour of germinated kidney bean, chickpea, and wheat. Legume Science, 2(3), e42. https://doi.org/10.1111/jfpp.14996

Sindhu, S., & Radhai Sri, S. (2022). Development of composite millet flour incorporated rusk. World Journal of Advanced Research and Reviews, 14(1), 584-590. https://doi.org/10.30574/wjarr.2022.14.1.0363

Singh, K., & Immanuel, G. (2022). Evaluation of physical and functional properties of composite flour from finger millet, rice and guar gum. International Journal of Plant & Soil Science, 34, 270-277. https://doi.org/10.18805/ajdfr.DR-2161

Slavin, J. (2013). Fiber and prebiotics: mechanisms and health benefits. Nutrients, 5(4), 1417-1435. https://doi.org/10.3390/nu5041417

Tangariya, P., Sahoo, A., Awasthi, P., & Pandey, A. (2018). Quality analysis of composite flour and its effectiveness for Chapatti formulation. Journal of Pharmacognosy and Phytochemistry, 7(4), 1013-1019. https://www.phytojournal.com/archives/2018/vol7issue4/PartQ/7-3-288-705.pdf

Tharise, N., Julianti, E., & Nurminah, M. (2014). Evaluation of physico-chemical and functional properties of composite flour from cassava, rice, potato, soybean and xanthan gum as alternative of wheat flour. International Food Research Journal, 21(4). http://www.ifrj.upm.edu.my/

Tumwine, G., Atukwase, A., Tumuhimbise, G. A., Tucungwirwe, F., & Linnemann, A. (2019). Production of nutrient‐enhanced millet‐based composite flour using skimmed milk powder and vegetables. Food Science & Nutrition, 7(1), 22-34. https://doi.org/10.1002/fsn3.777

Twinomuhwezi, H., Awuchi, C. G., & Rachael, M. (2020). Comparative study of the proximate composition and functional properties of composite flours of amaranth, rice, millet, and soybean. American Journal of Food Science and Nutrition, 6(1), 6-19. http://www.aascit.org/journal/ajfsn

Ukom, A. N., Adiegwu, E. C., Ojimelukwe, P. C., & Okwunodulu, I. N. (2019). Quality and sensory acceptability of yellow maize ogi porridge enriched with orange-fleshed sweet potato and African yam bean seed flours for infants. Scientific African, 6, e00194. https://doi.org/10.1016/j.sciaf.2019.e00194

Upadhyay, S., Tiwari, R., Kumar, S., Gupta, S. M., Kumar, V., Rautela, I., ... & Kaushik, R. (2023). Utilization of food waste for the development of composite bread. Sustainability, 15(17), 13079. https://doi.org/10.3390/su151713079

Villarino, C. B. J., Jayasena, V., Coorey, R., Chakrabarti-Bell, S., & Johnson, S. K. (2015). Nutritional, Health, and Technological Functionality of Lupin Flour Addition to Bread and Other Baked Products: Benefits and Challenges. Critical Reviews in Food Science and Nutrition, 56(5), 835-857. https://doi.org/10.1080/10408398.2013.814044

Wilson, A., Anukiruthika, T., Moses, J. A., & Anandharamakrishnan, C. (2021). Preparation of Fiber-enriched Chicken Meat Constructs Using 3D Printing. Journal of Culinary Science & Technology, 21(1), 127-138. https://doi.org/10.1080/15428052.2021.1901817

Zafar, T. A., Al-Hassawi, F., Al-Khulaifi, F., Al-Rayyes, G., Waslien, C., & Huffman, F. G. (2015). Organoleptic and glycemic properties of chickpea-wheat composite breads. Journal of Food Science and Technology, 52(4), 2256-2263. https://doi.org/10.1007/s13197-013-1192-7

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.