Abstract
Currently, environmental degradation caused by heavy metals has become a serious concern of many countries. To monitor the concentration of heavy metals in the environment, an in-situ sensor that can measure in real time and has high quality, sensitivity, and flexibility is essential. We proposed a modified multipath ring resonator (MPRR) based on silicon-on-insulator technology with additional gold nanodisk (GND) on top of the ring to increase its sensitivity. To prove the effect of GND on the sensitivity of the modified MPRR, finite-difference time-domain simulations were conducted. Results showed that the average sensitivity of the modified MPRR was 675 nm/RIU, where RIU corresponds to the refractive index unit, higher than that of the unmodified MPRR (171 nm/RIU). Moreover, compared with the single ring structure, the proposed design had better sensitivity. We believe that our proposed approach for the modification of MPRR is suitable for application to optical sensor development.
References
[1] Bharagava, R.N., 2017. Environmental Pollutants and Their Bioremediation Approaches. Bioremediation. 1–22, http://dx.doi.org/10.1201/b22171-1.
[2] Förstner, U., Müller, G., 1973. Heavy metal accumulation in river sediments: A response to environmental pollution. Geoforum. 4(2): 53–61, http://dx.doi.org/10.1016/0016-7185(73)90006-7.
[3] Mcgrath, M.J., Scanaill, C.N., 2013. Environmental Monitoring for Health and Wellness. Sens. Techno. 249–282, http://dx.doi.org/10.1007/978-1-4302-601 4-1_11.
[4] Densmore, A., Vachon, M., Xu, D.-X., Janz, S., Ma, R., Li, Y.-H., Lopinski, G., Delâge, A., Lapointe, J., Luebbert, C.C., Liu, Q.Y., Cheben, P., Schmid, J.H., 2009. Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection. Opt. Lett. 34(23): 3598, http://dx.doi.org/10.1 364/ol.34.003598.
[5] Homola, J., 2003. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3); 528–539, http://dx.doi.org/10.1007/ s00216-003-2101-0.
[6] Debackere, P., Scheerlinck, S., Bienstman, P., Baets, R., 2007. Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor: Reply. Opt. Express. 15(21): 13651, http://dx.doi.org/10.1364/oe.15.013651.
[7] Ymeti, A., Greve, J., Lambeck, P.V., Wink, T., Hövell, V., Beumer, Wijn, R.R., Heideman, R.G., Subramaniam, V., Kanger, J.S., 2007. Fast, Ultrasensitive Virus Detection Using a Young Interferometer Sensor. Nano Lett. 7(2): 394–397, http://dx.doi.org/10.1021/nl062595n.
[8] Hradetzky, D., Mueller, C., Reinecke, H., 2006. Interferometric label-free biomolecular detection system. J. Opt. A Pure Appl. Opt. 8(7): S360–S364, http://dx.doi.org/10.1088/1464-4258/8/7/s11.
[9] Ksendzov, A., Lin, Y., 2005. Integrated optics ring-resonator sensors for protein detection. Opt. Lett. 30(24): 3344, http://dx.doi.org/10.1364/ol.30.0033 44.
[10] Yalcin, A., Popat, K., Aldridge, J., Desai, T., Hryniewicz, J., Chbouki, N., Little, B., King, O., Van, V., Chu, S., Gill, D., Anthes-Washburn, M., Unlu, M., Goldberg, B., 2006. Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Top. Quant. Electron. 12(1): 148–155, http://dx.doi.org/10.1109/jstqe.2005.863003.
[11] Chao, C.-Y., Fung, W., Guo, L., 2006. Polymer microring resonators for biochemical sensing applications. IEEE J. Sel. Top. Quant. Electron. 12(1): 134–142, http://dx.doi.org/10.1109/jstqe.2005.8629 45.
[12] Passaro, V., Tullio, C., Troia, B., Notte, M., Giannoccaro, G., Leonardis, F., 2012. Recent Advances in Integrated Photonic Sensors. Sens. 12(11): 15558–15598, http://dx.doi.org/10.3390/ s1211155 58.
[13] Mulyanti, B., Pawinanto, R., Abdullah, A., Hasanah, L., Pantjawati, A., Hamidah, I., Nandiyanto, A., Zain, A.M., Menon, P., Shaari, S., 2018. Modeling of microring resonators for biochemical detection. Mater. Today Proc. 5(5): 13703–13710, http://dx.doi.org/10.1016/j.matpr.2018.02.008.
[14] Poon, J., Scheuer, J., Mookherjea, S., Paloczi, G.T., Huang, Y., Yariv, A., 2004. Matrix analysis of microring coupled-resonator optical waveguides. Opt. Express. 12(1): 90, http://dx.doi.org/10.1364/ opex.1 2.000090.
[15] Melloni, A., 2001. Synthesis of a parallel-coupled ring-resonator filter. Opt. Lett. 26(12): 917, http://dx.doi.org/10.1364/ol.26.000917.
[16] Mahmudin, D., Estu, T.T., Daud, P., Armi, N., Wijayanto, Y., Wiranto, G., 2015. Environmental liquid waste sensors using polymer multi-coupled ring resonators. 2015 Int. Conference Smart Sens. Appl. http://dx.doi.org/10.1109/icssa.2015.7322 516.
[17] Hidayat, I., Toyota, Y., Torigoe, O., Wada, O., Koga, R., 2003. Multipath structure for FSR expansion in waveguide-based optical ring resonator. Electron. Lett. 39(4): 366, http://dx.doi.org/10.104 9/el:20030276.
[18] Mahmudin, D., Estu, T.T., Daud, P., Hermida, I.D.P., Sugandi, G., Wijayanto, Y.N., Menon, P.S., Shaari, S., 2015. Sensitivity improvement of multipath optical ring resonators using silicon-on-insulator technology. 2015 IEEE Reg. Symp. Micro and Nanoelectron. http://dx.doi.org/10.1109/rs m.2015.7355021.
[19] Mahmudin, D., Rahman, A.N., Pristanto, E.J., Putranto, P., Desvasari, W., Setiawan, A., Darwis, F., Taufiqqurrachman, Sulistyaningsih, Hardiati, S., Kurniadi, D.P., Sugandi, G., Wijayanto, Y.N., Daud, P., 2019. Analysis of Multipath Optical Ring Resonator Structure for Single Side Band Microwave Photonic Filter Application. 2019 Int. Conference Electr. Electron. Inf. Eng. http://dx.doi.org/ 10.1109/iceeie47180.2019.8981434.
[20] Notte, M.L., Troia, B., Muciaccia, T., Campanella, C., Leonardis, F.D., Passaro, V., 2014. Recent Advances in Gas and Chemical Detection by Vernier Effect-Based Photonic Sensors. Sens. 14(3): 4831–4855, http://dx.doi.org/10.3390/s140304831.
[21] Steglich, P., Hülsemann, M., Dietzel, B., Mai, A., 2019. Optical Biosensors Based on Silicon-On-Insulator Ring Resonators: A Review. Mol. 24(3): 519, http://dx.doi.org/10.3390/molecules24030519.
[22] Urbonas, D., Balčytis, A., Gabalis, M., Vaškevičius, K., Naujokaitė, G., Juodkazis, S., Petruškevičius, R., 2015. Ultra-wide free spectral range, enhanced sensitivity, and removed mode splitting SOI optical ring resonator with dispersive metal nanodisks. Opt Lett. 40(13): 2977, http://dx.doi.org/10.1364/ ol.40.0029 77.
[23] Kuttge, M., Abajo F. Javier García De, Polman, A., 2010. Ultrasmall Mode Volume Plasmonic Nanodisk Resonators. Nano Lett. 10(5): 1537–1541, http://dx.doi.org/10.1021/nl902546r.
[24] Luan, E., Shoman, H., Ratner, D., Cheung, K., Chrostowski, L., 2018. Silicon Photonic Biosensors Using Label-Free Detection. Sens. 18(10): 3519, http://dx.doi.org/10.3390/s18103519.
Recommended Citation
Dicky, Gabriel; Taufiqurrahman, Shidqie; Estu, Topik Teguh; Wijayanto, Yusuf Nur; Manurung, Robeth Viktoria; Mahmudin, Dadin; Anshori, Isa; and Daud, Pamungkas
(2020)
"Sensitivity Enhancement of Silicon-on-Insulator Multipath Ring Resonator using Gold Nanodisk for Sensor Application,"
Makara Journal of Science: Vol. 24:
Iss.
3, Article 5.
DOI: 10.7454/mss.v24i3.1199
Available at:
https://scholarhub.ui.ac.id/science/vol24/iss3/5