•  
  •  
 

Abstract

Complex formation of Ni(II) and 1,10-phenanthroline (C12H8N2/Phen) with the addition of dithizone (C13H12N4S/HDz) at the hexane-water interface has been studied by direct measurement spectrophotometry using the centrifugal liquid membrane (CLM) method. Ni(II) ion with Phen formed a cationic complex of Ni(C12H8N2)2 2+ or NiPhen2 2+. That complex dissolved in the aqueous phase and had two UV absorption spectrum maxima wavelengths, λmax 270 and 292 nm. Observation of complex formation was performed variations of pH and ligand concentration. The pH caused protonation that affected the amount of the formed complex. With the variations of ligand concentrations, the greater was the concentration of ligands the greater was the formed complex. Based on the Batch method, the HDz ligand addition into the NiPhen2 2+ cationic complex produced ion association complex of Ni(C13H11N4S)2(C12H8N2) or NiDz2Phen at λmax 403 nm, and was extracted in the organic phase. Measurement results using CLM method showed that NiDz2Phen complex was formed at hexane-water interface with λmax 523 nm. Comparison of Phen with HDz ligand concentrations affected the initial formation rate of NiDz2Phen complex. The greater concentration of Phen ligand increased the initial rate of formation for synergistic complex. The obtained data using CLM method indicated that the synergistic complex formation rate constant of NiDz2Phen at the interface, k was 0.30/s.

References

[1] S. Banerjee, S. Bhattacharya, S. Basu, Spectrochim. Acta A 61 (2005) 1039. [2] B. Wionczyk, R. Cierpiszewski, A. Mól, K. Prochaska, J. Hazard Mater. 198 (2011) 257. [3] J.M. Zhao, X.Y. Shen, F.L. Deng, F.C. Wang, Y. Wu, H.Z. Liu, Sep. Purif. Technol. 78 (2011) 345. [4] X. Huang, J. Li, Z. Long, Y. Zhang, X. Xue, Z. Zhu, J. Rare Earth 26 (2008) 410. [5] Y. Hasegawa, S. Tamaki, H. Yajima, B. Hashimoto, T. Yaita, Talanta 85 (2011) 1543. [6] Z. Zhang, H. Li, F. Guo, S. Meng, D. Li, Sep. Purif. Technol. 63 (2008) 348. [7] X. Sun, J. Zhao, S. Meng, D. Li, Anal. Chim. Acta 533 (2005) 83. [8] Q. Jia, J. Wu, T-T. Li, W-H. Zhou, Chin. J. Anal. Chem. 36 (2008) 619. [9] X. Wang, M. Du, H. Liu, Sep. Purif. Technol. 93 (2012) 48. [10] C. Zidi, R. Tayeb, M.B.S. Ali, M. Dhahbi, J. Membrane Sci. 360 (2010) 334. [11] H. Watarai, Talanta 32 (1985) 817. [12] H. Watarai, M. Gotoh, N. Gotoh, Bull. Chem. Soc. Jpn. 70 (1997) 957. [13] H. Watarai, TrAC-Trend. Anal. Chem. 12 (1993) 313. [14] H. Watarai, Interface Sci. Technol. 14 (2007) 277. [15] H. Nagatani, H. Watarai, Anal. Chem. 70 (1998) 2860. [16] Y. Yulizar, A. Ohashi, H. Nagatani, H. Watarai, Anal. Chim. Acta 419 (2000) 107. [17] Y. Yulizar, A. Ohashi, H. Watarai, Anal. Chim. Acta 447 (2001) 247. [18] A. Ohashi, S. Tsukahara, H. Watarai, Anal. Chim. Acta 364 (1998) 53. [19] J.K. Mcculloch, J.M. Perera, E.D. Kelly, L.R. White, G.W. Stevens, F. Grieser, J. Colloid Interf. Sci. 184 (1996) 406. [20] H. Valdés, J. Romero, J. Sanchez, S. Bocquet, G.M. Rios, F. Valenzuela, Chem. Eng. J. 151 (2009) 333. [21] Z-N. Lou, Y. Xiong, J-J. Song, W-J. Shan, G-X. Han, Z-Q. Xing, Y-X Kong, Trans. Nonferrous Met. Soc. China 20 (2010) s10. [22] Y. Xiong, Z. Lou, S. Yue, J. Song, W. Shan, G. Han, Hydrometallurgy 100 (2010) 110. [23] H. Watarai, K. Sasaki, K. Takahashi, J. Murakami, Talanta 42 (1995) 1691. [24] H. Watarai, K. Takahashi, J. Murakami, Solvent Extr. Res. Dev. 3 (1996) 109. [25] Y. Yulizar, N. Wahyuningsih, N.D. Asri, H. Watarai, Proceeding of the 1st ACIKITA International Conference of Science and Technology (AICST), Jakarta, Indonesia, 2011, p.422.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.