•  
  •  
 

Abstract

The precursors, Na2HPO4.2H2O and CaCl2.2H2O are used for synthesizing pure hydroxyapatite which less of carbonate content. The high temperature of sintering, about 700o C of temperature, is treated to minimize the carbonate group on hydroxyapatite surface. Carbonate content of hydroxyapatite which is sintered in 700o C is less than 110o C. It indicates an increasing temperature of sintering will increase crystallinity and decrease carbonate content of hydroxapatite. This method gave better way to resulting hydroxyapatite crystal. The patterns of band of SDS PAGE in resulting of Protein Purification by DEAE matrix is also appear in using hydroxyapatite matrix. The other band also appear in purification by hydroxyapatite matrix, it showed that hydroxyapatite not only has DEAE matrix characteristic as anion exchange but also has kation exchange characteristic. These patterns proof that hydroxyapatite could be used in protein purification as matrix as cation an anion exchange. Additionally, apatite matrix is abiding and can be used repeatedly more than one hundred times without contamination.

References

[1] H. Aoki, Science and Medical Applications of Hydroxyapatite, JAAS, Takayama Press System Center Co. Inc., Tokyo, 1991, p. 1-57, 85. [2] Anon., Protein Purification, Amersham Biosciences Publishing, http://www.chromatography. amershambiosciences.com, 2001. [3] Z.H. Cheng, A. Yasukawa, K. Kandori, T. Ishikawa, J. Chem. Soc. 94 (1998) 10. [4] AK. Gross, V. Gross, CC. Berndt, J. Am. Ceram. Soc, 81 (1998) 106-112. [5] S. Ahmiarti, DS. Soedjoko. Makara seri Sains, 6/2 (2002) 55-58. [6] A. Slosarczyk, Z. Paszkiewicz, C. Paluszkiewicz, J. Molecular Structure 744-747 (2005) 657-661. [7] B.D. Cullity and S. R. Stock. Elements of X-Ray Diffraction Third Edition. Prentice Hall. Upper Saddle River, NJ. 2001, 22-40 [8] B. Yoon, H. Kim, S. Lee, C. Bae, Y. Koh, Y. Kong, H. Kim. Biomaterials Elsevier. 26 (2004) 2957-2963. [9] H. Milhofer, V. Hlady, FS. Baker, R.A. Beebe, N.W. Wikhom, J.S. Kittelberger. J. Colloid Interface Sci., 70/1 (1979) 1-9. [10] H.C.W. Skinner, J.S. Kittelberger, and R.A. Beebe, J. Phys. Chem., 79 (1975) 201 6-1 9. [11] H. Owada, K. Yamashita, T. Kanazawa, J. Mater. Sci. Lett., 9 (1990) 26-28. [12] M.A. Larmas, H. Hayrynen, L.H.J. Lajunen, Scand. J. Dent. Res. 101 (1993) 185-91. [13] J. Arends, J. Christoffersen, M.R. Christoffersen, H. Eckert, B. Fowler, J.C. Heughebaert, G.H. Nancollas, J.P. Yesinowski, S.J. Zawacki, J. Clyst. Growth, 84 (1987) 515-532. [14] M. Jemal, I. Khattech, Acta 152 (1989) 65-76. [15] W. Hankins and M. Hankins, Introduction to Chemistry. C. V. Mosby Company. London. 1974, 1655–1695. [16] T. Horigome, T. Hiranuma and H. Sugano, J. Biochem. lK6 (1989) 63-69. [17] http://www.BIO-RAD.com. [18] M.J. Gorbunoff, Anal Biochem 136 (1984) 425– 432 (a). [19] M.J. Gorbunoff. Anal Biochem 136 (1984) 433– 439 (b) . [20] M.J. Gorbunoff and S. Timasheff, Anal Biochem 136 (1984) 440–445 [21] T. Kawasaki, J Chromatogr 544 (1991) 147–184. [22] G. Bernardi and T. Kawasaki, Biochim Biophys Acta 160 (1968) 301–310. [23] T. Ogawa and T. Hiraide, Am Lab 28 (1996) 17I, J, L. [24] G. Bernardi and W.H. Cook, Biochim Biophys Acta 44 (1960) 96–105. [25] Anon. BioProcess Guide of Hydroxyapatite Chromatography. L & K Biosciences. Rungsted Kyst, Denmark, 2000. [26] J.R. Brooks, and C.V. Morr, J. Assoc. Offic. Anal. Chem. 62 (1985) 1347. [27] J.P. Laulhere, A.M. Lescure, J.F. Briatt, The journal of Biological Chemistry by the American Society for Biochemistry and Molecular Biology, 263 (1988) 21.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.