•  
  •  
 

Abstract

Organic farming is increasingly promoted as a sustainable alternative to conventional agriculture due to its positive effects on soil microbial dynamics, a critical component of ecosystem functioning. However, empirical comparisons of microbial responses across these systems are scarce. Therefore, we conducted a study to assess the various microbial indices of soils taken from distinct crop fields (e.g., brinjal, chilli, tomato, bean, and fallow lands) managed under both conventional and organic farming techniques. Composite soil samples from surface layer (0–15 cm) were collected in a completely random way from Bandarban upazila of Bangladesh (22°11'24.0"N 92°09'00.0"E, organic fields; 22°10'12.0"N 92°09'36.0"E, conventional fields). After 10-days of pre-incubation at 60% of water holding capacity (WHC), microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) of soils were assessed by chloroform fumigation-extraction method, and key microbial efficiency indicators (e.g., metabolic quotient, qCO2; microbial quotient, qMic and mineralization quotient, qM) were analyzed. Microbial activity (MA) was measured over 60 days. The results indicated that organic farming generally supports higher MBC and MBN levels, as observed in organic chilli (585.22 mg kg-1 MBC, 92.36 mg kg-1 MBN) and organic tomato (382.07 mg kg-1 MBC, 160.84 mg kg-1 MBN). In contrast, conventional farming exhibited significantly higher MA and qCO2 values. Conventional chilli and bean fields showed particularly high qCO2 (0.26 mg CO2-C/mg Cmic h-1×10-4 and 0.08 mg CO2-C/mg Cmic h-1×10-4) and mineralization quotient values (0.80% and 0.75%, respectively). A significant (p2. Our results suggest that soil microbial abundance in conventional farming are under stress, showing low efficiency with accelerated nutrient turnover. Notably, exceptions such as higher MBC and MBN in conventional tomato and brinjal fields reflected crop-specific responses. The present study demonstrates the need for future research on microbial community structure across diverse agroecosystems.

References

ADP (2023). Bangladesh’s agriculture, natural resources, and rural development sector assessment and strategy. Asian Development Bank. Manila, Philippines. http://dx.doi.org/10.22617/TCS230050

Agnelli, A., Ascher, J., Corti, G., Ceccherini, M. T., Nannipieri, P., & Pietramellara, G. (2004). Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biology and Biochemistry, 36(5), 859-868. https://doi.org/10.1016/j.soilbio.2004.02.004

Akter, S., Das, S., Roy, S. & Chowdhury, N. (2024). Study on microbial and ecophysiological indices of tea soils in Chattogram and Khagrachari Districts of Bangladesh. Chittagong University Journal of Biological Sciences, 12(1&2), 45-55. https://doi.org/10.3329/cujbs.v12i1.78241

Alef, K. (1995). Soil respiration. In Alef, K. and Nannipieri, P. (Eds), Methods in applied soil microbiology and biochemistry (pp 214-218). Academic Press, London.

Anderson, T. H. (2003). Microbial eco-physiological indicators to assess soil quality. Agriculture, Ecosystems and Environment, 98(1-3), 285-293. https://doi.org/10.1016/S0167-8809(03)00088-4

Anderson, T. H., & Domsch, K. H. (1989). Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry, 21(4), 471-479. https://doi.org/10.1016/0038-0717(89)90117-X

Anderson, T. H., & Domsch, K. H. (1990). Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry, 22(2), 251-255. https://doi.org/10.1016/0038-0717(90)90094-G

Bai, Z., Jia, A., Li, H., Wang, M., & Qu, S. (2023). Explore the soil factors driving soil microbial community and structure in Songnen alkaline salt degraded grassland. Frontier in Plant Science, 14, 1110685. https://doi.org/10.3389/fpls.2023.1110685

BER (2022). Bangladesh Economic Review. Finance Division, Ministry of Finance. Government of the People's Republic of Bangladesh. (pp. 91-105). www.mof.gov.bd

Bhanwaria, R., Singh, B., & Musarella, C. M. (2022). Effect of organic manure and moisture regimes on soil physiochemical properties, microbial biomass Cmic:Nmic:Pmic turnover and Yield of mustard grains in arid climate. Plants, 11(6), 722. https://doi.org/10.3390/plants11060722

Birge, H. E., Conant, R. T., Follett, R. F., Haddix, M. L., Morris, S. J., Snapp, S. S., & Paul, E. A. (2015). Soil respiration is not limited by reductions in microbial biomass during long-term soil incubations. Soil Biology and Biochemistry, 81, 304-310. https://doi.org/10.1016/j.soilbio.2014.11.028

Brennan, E. B., & Acosta-Martinez, V. (2017). Cover cropping frequency is the main driver of soil microbial changes during six years of organic vegetable production. Soil Biology and Biochemistry, 109, 188-204. https://doi.org/10.1016/j.soilbio.2017.01.014

Brookes, P.C., Landman, A., Pruden, G., & Jenkinson, D.S. (1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), 837-842. https://doi.org/10.1016/0038-0717(85)90144-0

Cao, H., Chen, R., Wang, L., Jiang, l., Yang, F., Zheng, S., Wang, G., & Lin, X. (2016). Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale. Scientific Report, 6(1), 25815. https://doi.org/10.1038/srep25815

Charaslertrangsi, T., Arunrat, N., Sereenonchai, S., & Wongkamhang, P. R. (2024). Comparison of microbial diversity and metabolic activities in organic and conventional rice farms in Thailand. Microbiology Spectrum, 12(8), e03071-23. https://doi.org/10.1128/spectrum.03071-23

Chowdhury, N., Marschner, P., & Burns, R. G. (2011). Soil microbial activity and community composition: impact of changes in matric and osmotic potential. Soil Biology and Biochemistry, 43(6), 1229-1236. https://doi.org/10.1016/j.soilbio.2011.02.012

Crystal-Ornelas, R., Thapa, R., & Tully, K. L. (2021). Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: A meta-analysis. Agriculture, ecosystems & environment, 312, 107356. https://doi.org/10.1016/j.agee.2021.107356

Dunn, L., Dequiedt, S., Marilleau, N., Lang, C., Djemiel, C., Cottin, A., Horrigue, W., Sadet-Bourgeteau, S., Ranjard, L., & Prévost-Bouré, N. C. (2025). Impact of farming practices on soil microbial biomass: An international synthesis. Agriculture, Ecosystems & Environment, 383, 109513. https://doi.org/10.1016/j.agee.2025.109513

Eisenhauer, N., Klier, M., Partsch, S., Sabais, A. C., Scherber, C., Weisser, W. W., & Scheu, S. (2009). No interactive effects of pesticides and plant diversity on soil microbial biomass and respiration. Applied Soil Ecology, 42(1), 31-36. https://doi.org/10.1016/j.apsoil.2009.01.005

Faroque, M.A.A., Kashem, M.A., & Bilkis, S.E. (2011). Sustainable agriculture: A challenge in Bangladesh. International Journal of Agricultural Research, Innovation and Technology. 1(1&2), 1-8. https://ageconsearch.umn.edu/record/305227/?ln=en&v=pdf

Feng, X., Qin, S., Zhang, D., Chen, P., Hu, J., Wang, G., Liu, Y., Wei, B., Li, Q., Yang, Y., & Chen, L. (2022). Nitrogen input enhances microbial carbon use efficiency by altering plant–microbe–mineral interactions. Global Change Biology, 28(16), 4845-4860. https://doi.org/10.1111/gcb.16229

Gabechaya, V., Andreeva, I., Morev, D., Yaroslavtsev, A., Neaman, A., & Vasenev, I. (2023). Exploring the influence of diverse viticultural systems on soil health metrics in the northern black sea region. Soil Systems, 7(3), 73. https://doi.org/10.3390/soilsystems7030073

Gayan, A., Borah, P., Nath, D., & Kataki, R. (2023). Soil microbial diversity, soil health and agricultural sustainability. In Farooq, M., Gogoi, N. and Pisante, M. (Eds.), Sustainable Agriculture and the Environment (pp.107-126). Academic Press. https://doi.org/10.1016/B978-0-323-90500-8.00006-3

Godley, A. R. (2004). Factors affecting the soil microbial quality measurements of biomass quotient and respiration quotient. Water and Environmental Journal, 18(2), 73-79. https://doi.org/10.1111/j.1747-6593.2004.tb00500.x

Han, W. Y., Xu, J. M., Wei, K., Shi, R. Z., & Ma, L. F. (2013). Soil carbon sequestration, plant nutrients and biological activities affected by organic farming system in tea (Camellia sinensis (L.) O. Kuntze) fields. Soil Science and Plant Nutrition, 59(5), 727-739. https://doi.org/10.1080/00380768.2013.833857

Hesse, P.R. (2002). A textbook of soil chemical analysis (pp. 520). CBC publishers & Distributors

Järvan, M., & Edesi, L. (2015). Nitrogen cycle bacteria in soils of organically and conventionally managed crop rotations. Zemdirbyste-Agriculture, 102(1), 15-22. https://doi.org/10.13080/z-a.2015.102.002

Khmelevtsova, L.E., Sazykin, I.S., Azhogina, T.N., & Sazykina, M.A. (2022). Influence of agricultural practices on bacterial community of cultivated soils. Agriculture, 12(3): 371. https://doi.org/10.3390/agriculture12030371

Laudicina, V.A., Badalucco, L., & Palazzolo, E. (2011). Effects of compost input and tillage intensity on soil microbial biomass and activity under Mediterranean conditions. Biology and Fertility of Soils, 47, 63-70. https://doi.org/10.1007/s00374-010-0502-8

Lehmann, J., Bossio, D.A., Kögel-Knabner, I., & Rillig M.C. (2020). The concept and future prospects of soil health. Nature Reviews Earth & Environment, 1, 544-553. https://doi.org/10.1038/s43017-020-0080-8

Lide, W., Chunrong, W., Dacheng, S., Jia, W., Hongsheng, H., Chunxiu, G., & Fangling, W. (2021). Affecting factors of soil microorganisms and their research prospects. Frontiers in Environmental Microbiology, 7(3), 74-79. https://doi.org/10.11648/j.fem.20210703.11

Lori, M., Symnaczik, S., Mäder, P., De Deyn, G., & Gattinger, A. (2017). Organic farming enhances soil microbial abundance and activity-A meta-analysis and meta-regression. PloS one, 12(7), e0180442. https://doi.org/10.1371/journal.pone.0180442

Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296(5573), 1694-1697. https://doi.org/10.1126/science.1071148

Montgomery, D. R., & Biklé, A. (2021). Soil health and nutrient density: beyond organic vs. conventional farming. Frontiers in Sustainable Food Systems, 5, 699147. https://doi.org/10.3389/fsufs.2021.699147

Okur, N., Ahmet, A., Muzaffer, C., Selçuk, G. N., & Huseyin, H. K. (2009). Microbial biomass and enzyme activity in vineyard soils under organic and conventional farming systems. Turkish Journal of Agriculture and Forestry, 33(4), 413-423. https://doi.org/10.3906/tar-0806-23

Parewa, H.P, Joshi, N., Meena, V.S., Joshi, S., Choudhary, A., Ram, M., Meena, S.C., & Jain, L.K. (2021). Role of biofertilizers and biopesticides in organic farming. In Meena, V.S., Meena, S.K., Rakshit, A., Stanley, J. and Srinivasarao, C. (Eds.), Advances in Organic Farming (pp. 133-159). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-822358-1.00009-2

Partelli, F. L., Vieira, H. D., Ferreira, E. P. D. B., Viana, A. P., Martins, M. A., & Urquiaga, S. (2012). Chemical and microbiological soil characteristics under conventional and organic coffee production systems. Communications in Soil Science and Plant Analysis, 43(5), 847-864. https://doi.org/10.1080/00103624.2012.648470

Pedro, M., Celis-Diez, J.L. Díaz-Siefer, P., Olmos-Moya, N., Montero-Silva, F., Molina, S., Fontúrbel, F.E., Aponte, H., Mandakovic, D., Bastidas, B., Arellano, E. C., Lavandero, B., Carvajal, M., & Gaxiola, A. (2024). Effects of sustainable agricultural practices on soil microbial diversity, composition, and functions. Agriculture, Ecosystems & Environment, 370, 109053, https://doi.org/10.1016/j.agee.2024.109053

Pinzari, F., Trinchera, A., Benedetti, A., & Sequi, P. (1999). Use of biochemical indices in the Mediterranean environment: comparison among soils under different forest vegetation. Journal of Microbiological Methods, 36(1-2), 21-28. https://doi.org/10.1016/S0167-7012(99)00007-X

Raju, M. N., Golla, N., & Vengatampalli, R. (2017). Soil microbiological properties. In Naga Raju, M., Golla, N., Vengatampalli, R. (Eds), Soil Enzymes (pp. 11-15). https://doi.org/10.1007/978-3-319-42655-6_3

Reganold, J. P., Andrews, P. K., Reeve, J. R., Carpenter-Boggs, L., Schadt, C. W., Alldredge, J. R., & Zhou, J. (2010). Fruit and soil quality of organic and conventional strawberry agroecosystems. PloS one, 5(9), e12346. https://doi.org/10.1371/annotation/1eefd0a4-77af-4f48-98c3-2c5696ca9e7a

Rezgui, C., Trinsoutrot-Gattin, I., Benoit, M., Laval, K., & Riah-Anglet, W. (2021). Linking changes in the soil microbial community to C and N dynamics during crop residue decomposition. Journal of Integrative Agriculture, 20(11), 3039-3059. https://doi.org/10.1016/S2095-3119(20)63567-5

Roy, S., & Chowdhury, N. (2023). A novel approach toward better use of saline soils vis-á-vis the evaluation of microbial responses. Soil Science Annual, 74(4), 183656. https://doi.org/10.37501/soilsa/183656

Sanou, J., Tengberg, A., Bazié, H. R., Mingasson, D., & Ostwald, M. (2023). Assessing trade-offs between agricultural productivity and ecosystem functions: A review of science-based tools?. Land, 12, 1329. https://doi.org/10.3390/land12071329

Santoni, M., Verdi, L., Imran Pathan, S., Napoli, M., Dalla Marta, A., Dani, F. R., Pacini, G. C., & Ceccherini, M. T. (2023). Soil microbiome biomass, activity, composition and CO2 emissions in a long‐term organic and conventional farming systems. Soil Use and Management, 39(1), 588-605. https://doi.org/10.1111/sum.12836

Sardiana, I. K. (2021). Organic vegetable farming system enhancing soil carbon sequestration in Bali, Indonesia. In IOP Conference Series: Earth and Environmental Science, 724(1), 012025. IOP Publishing. https://doi.org/10.1088/1755-1315/724/1/012025

Shu, X., He, J., Zhou, Z., Xia, L., Hu, Y., Zhang, Y., Zhang, Y., Luo, Y., Chu, H., Liu, W., Yuan, S., Gao, X., & Wang, C. (2022). Organic amendments enhance soil microbial diversity, microbial functionality and crop yields: A meta-analysis. Science of The Total Environment, 829, 154627. https://doi.org/10.1016/j.scitotenv.2022.154627

Theodoro, V. C. A., Alvarenga, M. I. N., Guimarães, R. J., & Mourão, M. Jr. (2003). Microbial biomass carbon and mycorrhiza in soil under native wood and coffee agroecosystems. Acta Scientiarum Agronomy, 25, 147-153. http://mycorrhizae.org.in/index.php?option=com_papers&task=details&sid=964&theme=&search=

Upazila Nirdeshika (2010). Bandarban Sadar. Soil Resource Development Institute, Ministry of Agriculture, Government of the People’s Republic of Bangladesh

Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6), 703-707. https://doi.org/10.1016/0038-0717(87)90052-6

Vittori Antisari, L., Ferronato, C., De Feudis, M., Natali, C., Bianchini, G., & Falsone, G. (2021). Soil biochemical indicators and biological fertility in agricultural soils: A case study from northern Italy. Minerals, 11(2), 219. https://doi.org/10.3390/min11020219

Wachter, J. M., Painter, K. M., Carpenter-Boggs, L. A., Huggins, D. R., & Reganold, J. P. (2019). Productivity, economic performance, and soil quality of conventional, mixed, and organic dryland farming systems in eastern Washington State. Agriculture, Ecosystems & Environment, 286, 106665. https://doi.org/10.1016/j.agee.2019.106665

Wang, G., Bei, S., Li, J., Bao, X., Zhang, J., Schultz, P. A., Li, H., Li, L., Zhang, F., Bever, J. D., & Zhang, J. (2021). Soil microbial legacy drives crop diversity advantage: Linking ecological plant–soil feedback with agricultural intercropping. Journal of Applied Ecology, 58(3), 496-506. https://doi.org/10.1111/1365-2664.13802

World Bank Group (2021, November 2024). Climate Change Knowledge Portal. https://climateknowledgeportal.worldbank.org/country/bangladesh/climate-data-historical

Xu, X., Schimel, J. P., Janssens, I.A., Song, X., Song, C., Yu, G., Sinsabaugh, R. L., Tang, D., Zhang, X., & Thornton, P. E. (2017). Global pattern and controls of soil microbial metabolic quotient. Ecological Monographs, 87(3), 429-441. http://www.jstor.org/stable/26358515

Yang, Y., Liu, H., Wu, J., Zhang, S., Gao, C., Zhang, S., & Tang, D. W. (2023). Soil enzyme activities, soil physical properties, photosynthetic physical characteristics and water use of winter wheat after long-term straw mulch and organic fertilizer application. Frontiers in Plant Science, 14, 1186376. https://doi.org/10.3389/fpls.2023.1186376

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.