Author ORCID Identifier
https://orcid.org/0009-0006-0780-4003
Article Classification
Environmental Science
Abstract
Jakarta, Indonesia's bustling capital, is grappling with escalating air pollution levels attributed to a confluence of socio-economic and infrastructural factors. This study employs Vensim modelling to project PM2.5 pollution trends through 2040, analysing the dynamic interplay among major contributors: increased vehicular emissions, industrial activities, public transportation deficiencies, and waste management inefficiencies. Materials and Methods: The method that will be used in this air pollution analysis is to integrate empirical data spanning three years to construct a predictive model underpinned by a robust causal loop diagram that elucidates the relationships between system variables and air quality. The results of this paper indicate a projected 50% increase in PM2.5 levels by 2040 if current trends persist, with vehicular emissions being the predominant contributor, accounting for 67.4% of the increase. This underscores the critical need for stringent emissions standards and comprehensive enhancements to public transportation infrastructure. The study's simulations suggest that without significant policy interventions, air quality will continue to deteriorate, posing severe public health risks. Discussion points emphasise the model's implications for environmental policy, advocating for targeted measures to curb vehicular emissions and promote sustainable urban planning. Comparisons with existing literature highlight the study's contribution to understanding localised pollution dynamics, providing a granular analysis that aligns with global research trends. This paper aims to call for immediate action to implement rigorous environmental policies and infrastructure improvements to mitigate air pollution effectively. These strategies include enforcing stricter emissions standards, expanding public transportation networks, and integrating sustainable technologies across transportation and industrial sectors. This research not only maps a trajectory of Jakarta's air quality but also frames a policy response model that could guide similar urban centres globally facing air pollution challenges.
References
AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I., Mazdiyasni, O., Moftakhari, H., Papalexiou, S. M., Ragno, E., & Sadegh, M. (2020). Climate extremes and compound hazards in a warming world. Annual Review of Earth and Planetary Sciences, 48(1), 519–548.[E1]
Basri, I., Jannus, P., & Sukusno, P. (2023). Analisa Kelayakan Ekonomi JIH untuk Perencanaan PLTS On-Grid Gedung SMA Suluh Jakarta di Lantai Satu. Prosiding Seminar Nasional Teknik Mesin, 1, 185–193.
Chen, X. H., Tee, K., Elnahass, M., & Ahmed, R. (2023). Assessing the environmental impacts of renewable energy sources: A case study on air pollution and carbon emissions in China. Journal of Environmental Management, 345, 118525. https://doi.org/10.1016/j.jenvman.2023.118525.
Dianati, K., Schäfer, L., Milner, J., Gómez-Sanabria, A., Gitau, H., Hale, J., Langmaack, H., Kiesewetter, G., Muindi, K., & Mberu, B. (2021). A system dynamics-based scenario analysis of residential solid waste management in Kisumu, Kenya. Science of the Total Environment, 777, 146200.
Ekinci, E., Kazancoglu, Y., & Mangla, S. K. (2020). Using system dynamics to assess the environmental management of cement industry in streaming data context. Science of the Total Environment, 715, 136948. https://doi.org/10.1016/j.scitotenv.2020.136948
Feng, S., Huang, F., Zhang, Y., Feng, Y., Zhang, Y., Cao, Y., & Wang, X. (2023). The pathophysiological and molecular mechanisms of atmospheric PM2. 5 affecting cardiovascular health: A review. Ecotoxicology and Environmental Safety, 249, 114444. https://doi.org/10.1016/j.ecoenv.2022.114444
García, J. M. (2020). Vensim Simulation Models: Practical Exercises of System Dynamics. Juan Martín García.
Gunawan, A. A. L., & Winarti, A. (2022). Pengaruh aplikasi dompet digital terhadap transaksi dimasa kini. Nautical: Jurnal Ilmiah Multidisiplin Indonesia, 1(6), 352–356. https://doi.org/10.55904/nautical.v1i6.214
Handayani, S., Kesuma, S. I., & Thoha, A. S. (2023). The impact of industrial agglomeration on air quality from a regional development perspective. https://doi.org/10.54660/.IJMRGE.2023.4.3.846-852
Jia, S. (2021). Effect of combined strategy on mitigating air pollution in China. Clean Technologies and Environmental Policy, 23, 1027–1043. https://doi.org/10.1007/s10098-020-02013-8
Khan, S., Hassan, Q., Kumar, K., Dixit, S., Sharma, K., Kumar, V., Dhaliwal, N., & Madhu, B. (2023). Modelling the Impact of Road Dust on Air Pollution: A Sustainable System Dynamics Approach. E3S Web of Conferences, 430, 01176. https://doi.org/10.1051/e3sconf/202343001176
Kumar, N., Kumar, S., & Pandey, S. P. (2023). Traffic‐Related Air Pollution and Associated Human Health Risk. Macromolecular Symposia, 407(1), 2100486. https://doi.org/10.1002/masy.202100486
Lakner, Z., Popp, J., Oláh, J., Zéman, Z., & Molnár, V. (2024). Possibilities and limits of modelling of long-range economic consequences of air pollution–A case study. Heliyon, 10(4). https://doi.org/10.1016/j.heliyon.2024.e26483
Lestari, P., Khafid Arrohman, M., Damayanti, S., & Klimont, Z. (2023). Emissions Inventory of Air Pollutants from Anthropogenic Sources in Jakarta. EGU General Assembly Conference Abstracts, EGU-6686.
Li, D., Shi, Y., Sun, Y., Xing, Y., Zhang, R., & Xue, J. (2024). Simulation and Forecasting Study on the Influential Factors of PM2. 5 Related to Energy Consumption in the Beijing–Tianjin–Hebei Region. Sustainability, 16(8), 3152. https://doi.org/10.3390/su16083152
Liu, X., Wang, Z., & Cui, X. (2021). Scenario simulation of the impact of China’s free-trade zone construction on regional sustainable development: a case study of the pearl river delta urban agglomeration. Sustainability, 13(14), 8083. https://doi.org/10.3390/su13148083
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: a review. Frontiers in Public Health, 8, 14. https://doi.org/10.3389/fpubh.2020.00014
Maulana, A. (2022). Analisis Validtas, Reliabilitas, dan Kelayakan Instrumen Penilaian Rasa Percaya Diri Siswa. Jurnal Kualita Pendidikan, 3(3), 133–139. https://doi.org/10.51651/jkp.v3i3.331
Mobaseri, M., Mousavi, S. N., & Mousavi Haghighi, M. H. (2021). Causal effects of population growth on energy utilization and environmental pollution: A system dynamics approach. Caspian Journal of Environmental Sciences, 19(4), 601–618. https://doi.org/10.22124/cjes.2021.5088
Moraga, R., & Hosseinabad, E. R. (2017). A system dynamics approach in air pollution mitigation of metropolitan areas with sustainable development perspective: a case study of Mexico City. Journal of Applied Environmental and Biological Sciences, 7(12), 164–174.
Pérez, L. E., Pérez, A. E., & Vásquez, Ó. C. (2024). Evaluation of mitigation initiatives for simultaneous air pollution and municipal solid waste systems: A System Dynamics Approach. Socio-Economic Planning Sciences, 95, 102010. https://doi.org/10.1016/j.seps.2024.102010
Roebianto, A., Savitri, S. I., Aulia, I., Suciyana, A., & Mubarokah, L. (2023). Content validity: Definition and procedure of content validation in psychological research. TPM, 30(1), 5–18.
Sánchez-Céspedes, J. M., Gaona-Barrera, A. E., & Dallos-Parra, D. L. (2022). Simulation Model for the Evaluation of Environmental Policies Through the Characterization of Air Pollution in the City of Bogotá using System Dynamics. Ingeniería y Competitividad, 24(2).
Shahgholian, K., & Hajihosseini, H. (2009). A dynamic model of air pollution, health, and population growth using system dynamics: A study on Tehran-Iran (with computer simulation by the software Vensim). International Journal of Computer and Systems Engineering, 3(11), 372–379.
Smiianov, V. A., Liulov, O. V., Pimonenko, T. V., Andrushchenko, T. A., Sova, S., & Grechkovskaya, N. V. (2020). The impact of the pandemic lockdown on air pollution, health and economic growth: system dynamics analysis.
Tahsiri, A., & Arab, M. (2023). A system dynamics model for a holistic analysis of urban NO x emissions: a case study of Tehran, Iran. Environment, Development and Sustainability, 25(7), 7299–7323. https://doi.org/10.1007/s10668-022-02323-5
Tinambunan, W. D. (2022). Kajian Hukum Pencemaran Udara DKI Jakarta ditinjau Perbandingan Hukum Lingkungan Hidup Indonesia, Malaysia, dan Singapura. Jurnal Justisia : Jurnal Ilmu Hukum, Perundang-Undangan Dan Pranata Sosial, 7(1), 30. https://doi.org/10.22373/justisia.v7i1.12815
Usman, G., Mashood, A. A., Aliyu, A., Adamu, K. S., Salisu, A., Abdullahi, A. K., & Sheriff, H. K. (2023). Effects of environmental pollution on wildlife and human Health and novel mitigation strategies. World Journal of Advanced Research and Reviews, 19(2), 1239–1251. https://doi.org/10.30574/wjarr.2023.19.2.1644
Waryatno, N. F. P., & Kinanti, N. P. (2022). Kondisi Pencemaran Udara pada Saat Periode Lebaran 2022 di Wilayah Jakarta. Buletin GAW Bariri (BGB), 3(2). https://doi.org/10.31172/bgb.v3i2.68
Winata, H. M., & Wicaksono, A. S. (2023). Comparative Study Between Pre and Post Implementation of Several Policies: Air Quality Index in DKI Jakarta. Jurnal Administrasi Publik, 14(2). http://dx.doi.org/10.21203/rs.3.rs-4884134/v1
Yudiskara, I. M. N., Dwidasmara, I. B. G., & Widiartha, I. M. (2023). Prediksi Polusi Udara Kota Jakarta Menggunakan Recurrent Neural Network-Gated Recurrent Units. Jurnal Pengabdian Informatika, 1(3), 807–814. ISSN 2963-6280, 2985-8127
Recommended Citation
Harjono, Chandra; Gianto, Ludy; Sidik, Rachmattullah; and Widaningrum, Dyah Lestari
(2024).
FORECASTING AIR POLLUTION DRIVEN BY VEHICLE GROWTH, PUBLIC TRANSPORT, INDUSTRY, AND HOUSEHOLD WASTE.
Journal of Environmental Science and Sustainable Development, 7(2), 743-763.
Available at: https://doi.org/10.7454/jessd.v7i2.1272