Author ORCID Identifier
https://orcid.org/0009-0001-8129-3487
Article Classification
Environmental Science
Abstract
Undoubtedly, one of the biggest alarming phenomena of this decade is the tremendous fluctuations in the weather and climate. Therefore, different types of surveys, investigations, and research are required in this regard in every region. A low-cost weather monitoring system can be implemented in every educational and research institute to collect and analyze different types of weather-related data. This study establishes the method of developing such a system and analyzing data in a simplified way which the data gathered during thunderstorms and cyclonic activity in Bangladesh. The system was designed with Proteus 8 professional software and developed by using a microcontroller, a temperature-humidity sensor, a wind speed analyzer, an automated rainfall analyzer, a barometric pressure sensor, and an LDR-based lightning bolt analyzer with a Linux-operated computer. The result obtained from the developed system is calibrated and compared with the standard value or theoretical value. The comparison graph shows that the developed system is efficient and reliable. After calibrating the system, several data points were collected at Mawlana Bhashani Science and Technology University, Tangail, Bangladesh. Developing an in-house weather monitoring system allows institutions to avoid costly foreign data purchases, reducing expenses and reliance on international services. Practically, this research can be applied to support climate studies and localized forecasting without the expense of high foreign exchange rates, allowing for more affordable meteorological research and enhancing local expertise.
References
Badamasi, Y. A. (2014). The working principle of an Arduino. Proceedings of the 11th International Conference on Electronics, Computer and Computation, ICECCO 2014. https://doi.org/10.1109/ICECCO.2014.6997578
Bell, S. (1996). A Guide to the Measurement of Humidity. http://eprintspublications.npl.co.uk/1581/
Bharti, B., Kumar, M., & Chauhan, U. (2023). Smart Kitchen using IOT. 2023 International Conference on Artificial Intelligence and Smart Communication, AISC 2023, 796–799. https://doi.org/10.1109/AISC56616.2023.10084932
Brun, P., Zimmermann, N. E., Hari, C., Pellissier, L., & Karger, D. N. (2022). Global climate-related predictors at kilometer resolution for the past and future. Earth System Science Data, 14(12), 5573–5603. https://doi.org/10.5194/ESSD-14-5573-2022
Chung, W. Y., & Oh, S. J. (2006). Remote monitoring system with wireless sensors module for room environment. Sensors and Actuators B: Chemical, 113(1), 64–70. https://doi.org/10.1016/J.SNB.2005.02.023
De Araújo, T. C., Silva, L. T., & Moreira, A. J. C. (2020). Deviation prediction and correction on low-cost atmospheric pressure sensors using a machine-learning algorithm. SENSORNETS 2020 - Proceedings of the 9th International Conference on Sensor Networks, 41–51. https://doi.org/10.5220/0008968400410051
Dewan, A., Hossain, M. F., Rahman, M. M., Yamane, Y., & Holle, R. L. (2017). Recent Lightning-Related Fatalities and Injuries in Bangladesh. Weather, Climate, and Society, 9(3), 575–589. https://doi.org/10.1175/WCAS-D-16-0128.1
Färm, G., & Abdullah, M. O. (2022). SafeWalk : A tool for the visually impaired. https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-47274
Fazeli, S., Haghani, M., Mojtahedi, M., & Rashidi, T. H. (2024). The role of individual preparedness and behavioural training in natural hazards: A scoping review. International Journal of Disaster Risk Reduction, 105, 104379. https://doi.org/10.1016/J.IJDRR.2024.104379
Fita, L., Polcher, J., Giannaros, T. M., Lorenz, T., Milovac, J., Sofiadis, G., Katragkou, E., & Bastin, S. (2019). CORDEX-WRF v1.3: Development of a module for the Weather Research and Forecasting (WRF) model to support the CORDEX community. Geoscientific Model Development, 12(3), 1029–1066. https://doi.org/10.5194/GMD-12-1029-2019
Flammini, A., Ferrari, P., Marioli, D., Sisinni, E., & Taroni, A. (2009). Wired and wireless sensor networks for industrial applications. Microelectronics Journal, 40(9), 1322–1336. https://doi.org/10.1016/J.MEJO.2008.08.012
GUIDE, A. (2007). Understanding weather and climate. http://karncsc.com/FileDownload/Downloads/Activity_Guide_2014_English.pdf
Halder, S., & Sivakumar, G. (2017). Embedded based remote monitoring station for live streaming of temperature and humidity. International Conference on Electrical, Electronics, Communication Computer Technologies and Optimization Techniques, ICEECCOT 2017, 2018-January, 284–287. https://doi.org/10.1109/ICEECCOT.2017.8284683
Hansen, J., Sato, M., Hearty, P., Ruedy, R., Kelley, M., Masson-Delmotte, V., Russell, G., Tselioudis, G., Cao, J., Rignot, E., Velicogna, I., Tormey, B., Donovan, B., Kandiano, E., Von Schuckmann, K., Kharecha, P., Legrande, A. N., & Bauer, M. (2016). Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2 °c global warming could be dangerous. Atmospheric Chemistry and Physics, 16(6), 3761–3812. https://doi.org/10.5194/ACP-16-3761-2016
Harker, J., Backhurst, J., & Richardson, J. (2013). Chemical Engineering Volume 2. https://books.google.com/books?hl=en&lr=&id=ottGCe1CDUoC&oi=fnd&pg=PP1&dq=Coulson,+J.+M.+And+Richardson,+J.+F.+,++%E2%80%9CChemical+Engineering%E2%80%9D,+Volume+1,+5th+edition,+Pergamon+Press,++(1996)+Oxford.&ots=BlJQV2b3Gw&sig=H9oqX6laBuHyBJTwR8Q5TvB1_P8
Herndon, J. M. (2019). Role of Atmospheric Convection in Global Warming. Journal of Geography, Environment and Earth Science International, 19(4), 1–8. https://doi.org/10.9734/JGEESI/2019/V19I430091
How Rain and Humidity Connected? | Smart Fog. (n.d.). Retrieved March 3, 2024, from https://www.smartfog.com/how-rain-and-humidity-connected.html
Humidity: Meaning and Types | Atmospheric Pressure. (n.d.). Retrieved March 3, 2024, from https://www.yourarticlelibrary.com/agrometeorology/humidity-meaning-and-types-atmospheric-pressure/88802
Islam, Md. T., & Talukder, R. C. (2016). Design & Development of a Microcontroller Based Water Flow Control System Using Servo Motor. http://dspace.ewubd.edu:8080/xmlui/handle/123456789/1806
Khan, A. W., & Khattak, W. A. (2023). Enhancing Urban Health: Machine Learning Applications in Environmental Managemen. International Journal of Sustainable Infrastructure for Cities and Societies, 8(1), 1–21. https://vectoral.org/index.php/IJSICS/article/view/1
Kodali, R. K., & Mandal, S. (2016a). IoT based weather station. International Conference on Control, Instrumentation, Communication and Computational Technologies, 680–683. https://doi.org/10.1109/ICCICCT.2016.7988038
Kodali, R. K., & Mandal, S. (2016b). IoT based weather station. International Conference on Control, Instrumentation, Communication and Computational Technologies, 680–683. https://doi.org/10.1109/ICCICCT.2016.7988038
Kong, F. (2019). Long and short duration heavy rainfall spatio-temporal patterns change and its contribution to total heavy rainfall in China. IOP Conference Series: Earth and Environmental Science, 310(5), 052006. https://doi.org/10.1088/1755-1315/310/5/052006
Krishnamurthi, K., Thapa, S., … L. K.-I. J. of, & 2015, undefined. (n.d.). Arduino based weather monitoring system. Pnrsolution.OrgK Krishnamurthi, S Thapa, L Kothari, A PrakashInternational Journal of Engineering Research and General Science, 2015•pnrsolution.Org. Retrieved November 14, 2024, from http://pnrsolution.org/Datacenter/Vol3/Issue2/64.pdf
Kumar, A., Nagar, S., & Anand, S. (2021). Climate change and existential threats. Global Climate Change, 1–31. https://doi.org/10.1016/B978-0-12-822928-6.00005-8
Kuria, K. P., Robinson, O. O., & Gabriel, M. M. (2020). Monitoring Temperature and Humidity using Arduino Nano and Module-DHT11 Sensor with Real Time DS3231 Data Logger and LCD Display. http://repository.tharaka.ac.ke/xmlui/handle/1/4304
LaFay, E. (2024). Meteorology, Climate, and Health in the United States. Oxford Research Encyclopedia of Climate Science. https://doi.org/10.1093/ACREFORE/9780190228620.013.832
Liu, W., Zhang, A., Wang, L., Fu, G., Chen, D., Liu, C., & Cai, T. (2015). Projecting streamflow in the Tangwang River basin (China) using a rainfall generator and two hydrological models. Climate Research, 62(2), 79–97. https://doi.org/10.3354/CR01261
Liu, X. C., Gao, T. C., & Liu, L. (2013). A comparison of rainfall measurements from multiple instruments. Atmospheric Measurement Techniques, 6(7), 1585–1595. https://doi.org/10.5194/AMT-6-1585-2013
Mahan, J. R., Conaty, W., Neilsen, J., Payton, P., & Cox, S. B. (2010). Field performance in agricultural settings of a wireless temperature monitoring system based on a low-cost infrared sensor. Computers and Electronics in Agriculture, 71(2), 176–181. https://doi.org/10.1016/J.COMPAG.2010.01.005
Makarieva, A. M., Gorshkov, V. G., Sheil, D., Nobre, A. D., & Li, B.-L. (2013). Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. Acp.Copernicus.OrgAM Makarieva, VG Gorshkov, D Sheil, AD Nobre, BL LiAtmospheric Chemistry and Physics, 2013•acp.Copernicus.Org, 13, 1039–1056. https://doi.org/10.5194/acp-13-1039-2013
Markham, A. (1996). Potential impacts of climate change on ecosystems: a review of implications for policymakers and conservation biologists. Climate Research, 06(2), 179–191. https://doi.org/10.3354/CR006179
Marshall, T. C., & Stolzenburg, M. (1998). Estimates of cloud charge densities in thunderstorms. Journal of Geophysical Research: Atmospheres, 103(D16), 19769–19775. https://doi.org/10.1029/98JD01674
Maximillian, J., Brusseau, M. L., Glenn, E. P., & Matthias, A. D. (2019). Pollution and Environmental Perturbations in the Global System. Environmental and Pollution Science, 457–476. https://doi.org/10.1016/B978-0-12-814719-1.00025-2
Mayurappriyan, P. S., Saravanakumar, S., Shreenivas, K., & Manimekalai, V. (2021). Design and Implementation of a Novel Low Cost Self-Powered Weather Monitoring Station. 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation, ICAECA 2021. https://doi.org/10.1109/ICAECA52838.2021.9675786
Meehl, G. A., Washington, W. M., Collins, W. D., Arblaster, J. M., Hu, A., Buja, L. E., Strand, W. G., & Teng, H. (2005). How much more global warming and sea level rise? Science, 307(5716), 1769–1772. https://doi.org/10.1126/SCIENCE.1106663
Mialdea-Flor, I., Segura-Garcia, J., Felici-Castell, S., Garcia-Pineda, M., Alcaraz-Calero, J. M., & Navarro-Camba, E. (2019). Development of a Low-Cost IoT System for Lightning Strike Detection and Location. Electronics 2019, Vol. 8, Page 1512, 8(12), 1512. https://doi.org/10.3390/ELECTRONICS8121512
Mitchell, J. F. B. (1989). The “Greenhouse” effect and climate change. Reviews of Geophysics, 27(1), 115–139. https://doi.org/10.1029/RG027I001P00115
Monirul Qader Mirza, M. (2002). Global warming and changes in the probability of occurrence of floods in Bangladesh and implications. Global Environmental Change, 12(2), 127–138. https://doi.org/10.1016/S0959-3780(02)00002-X
Mothukuri, A. (2021). IoT Based Weather Monitoring System. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.3918133
Priambodo, A. S., & Nugroho, A. P. (2021). Design & Implementation of Solar Powered Automatic Weather Station based on ESP32 and GPRS Module. Journal of Physics: Conference Series, 1737(1). https://doi.org/10.1088/1742-6596/1737/1/012009
Quetschlich, N., Burgholzer, L., & Wille, R. (2023). MQT Bench: Benchmarking Software and Design Automation Tools for Quantum Computing. Quantum, 7, 1062. https://doi.org/10.22331/q-2023-07-20-1062
Ramírez-López, F., Yáñez-Casas, G. A., Casillas-Aviña, G. E., Hernández-Gómez, J. J., Mata-Rivera, M. F., & Ramírez-Espinosa, S. (2022). Simulation and Implementation of an Environmental Monitoring System Based on LPWAN/IoT. Communications in Computer and Information Science, 1659 CCIS, 237–269. https://doi.org/10.1007/978-3-031-18082-8_16
Selvam, A. P., & Al-Humairi, S. N. S. (2023). The Impact of IoT and Sensor Integration on Real-Time Weather Monitoring Systems: A Systematic Review. https://doi.org/10.21203/RS.3.RS-3579172/V1
Smythe, R. J. (2022). Weight, Mass, and Force. Arduino Measurements in Science, 461–564. https://doi.org/10.1007/978-1-4842-6781-3_9
Sun, B., Zhou, W., Yuan, M. Z., Fang, E. Q., & Gan, N. (2018). A Cylindrical Vehicle-Mounted Anemometer Based on 12 Pressure Sensors-Principle, Prototype Design, and Validation. IEEE Sensors Journal, 18(17), 6954–6961. https://doi.org/10.1109/JSEN.2018.2852286
Suryana, A., Lismana, F. P., Rachmat, R. M., Putra, S. D., & Artiyasa, M. (2020). Implementation of Weather Station for the Weather Reality in A Room. 6th International Conference on Computing, Engineering, and Design, ICCED 2020. https://doi.org/10.1109/ICCED51276.2020.9415799
Tabassum, S., Hossain, A., Tabassum, S., & Hossain, A. (2018). Design and Development of Weather Monitoring and Controlling System for a Smart Agro (Farm). Intelligent Control and Automation, 9(3), 65–73. https://doi.org/10.4236/ICA.2018.93005
Tan, Y. K., & Panda, S. K. (2011). Self-autonomous wireless sensor nodes with wind energy harvesting for remote sensing of wind-driven wildfire spread. IEEE Transactions on Instrumentation and Measurement, 60(4), 1367–1377. https://doi.org/10.1109/TIM.2010.2101311
Turkmanović, H., Karličić, M., Rajović, V., & Popović, I. (2023). High Performance Software Architectures for Remote High-Speed Data Acquisition. Electronics 2023, Vol. 12, Page 4206, 12(20), 4206. https://doi.org/10.3390/ELECTRONICS12204206
Verma, S., Kameswari, Y. L., & Kumar, S. (2024). A Review on Environmental Parameters Monitoring Systems for Power Generation Estimation from Renewable Energy Systems. BioNanoScience. https://doi.org/10.1007/S12668-024-01358-4
Villarini, G., Mandapaka, P. V., Krajewski, W. F., & Moore, R. J. (2008). Rainfall and sampling uncertainties: A rain gauge perspective. Journal of Geophysical Research: Atmospheres, 113(D11), 11102. https://doi.org/10.1029/2007JD009214
Wu, L., Su, H., Fovell, R. G., Wang, B., Shen, J. T., Kahn, B. H., Hristova-Veleva, S. M., Lambrigtsen, B. H., Fetzer, E. J., Jiang, J. H., Su, H., Fovell, R. G., Wang, B., Shen, J. T., Kahn, B. H., Hristova-Veleva, S. M., Lambrigtsen, B. H., Fetzer, E. J., & Jiang, J. H. (2012). Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate. Wiley Online LibraryL Wu, H Su, RG Fovell, B Wang, JT Shen, BH Kahn, SM Hristova‐Veleva, BH LambrigtsenGeophysical Research Letters, 2012•Wiley Online Library, 39(20). https://doi.org/10.1029/2012GL053546
Recommended Citation
Alam, Ariful; Muntaha, Sidratula; Munshi, Poonam; Khan, Israt; Islam, Rakibul; Bhuian, Jamil; Arafat, Md.Yasir; and Hasan, Md. Ridwanul
(2024).
CATALYZING METEOROLOGICAL INSIGHTS WITH A COST-EFFECTIVE WEATHER MONITORING SYSTEM.
Journal of Environmental Science and Sustainable Development, 7(2), 599-617.
Available at: https://doi.org/10.7454/jessd.v7i2.1254