Author ORCID Identifier


Article Classification

Sustainable Development


The developments of the global economy and society impact resources and the environment. This condition requires an alternative to find new, safe, and sustainable energy types. The conversion of cellulose to 5-hydroxymethylfurfural (5-HMF) has become a significant area of research interest. It has triggered the development of research directions related to biomass and energy because it can be an intermediary source for making polymers, solvents, pharmaceuticals, and biofuels. The primary objective of this study is to give a bibliometric analysis of 1753 reports on the development of research on cellulose conversion to 5-HMF from 1965 to 2021. The data were gathered from the Scopus database using the keywords “conversion of cellulose” and “5-HMF”, and they were then subject to content and bibliometric analysis. VOSviewer is a software used for data analysis that can visualize the linkages and map the outcomes of particular study objects. The results show increased annual publications in the last five years with cross-disciplinary collaborations in scientific fields. In terms of publications, the United States tops other nations (550 documents), whereas Indonesia is rated 34th (15 documents). Based on VOSviewer analysis, the overlay visualization of research trends by year shows that the keyword of the process of converting cellulose to 5-HMF is a relatively recent study topic compared to other cellulose topics. By identifying specific suggestions and strategies for the development and utilization of biomass energy based on the analysis of the relationship and interaction between the utilization of biomass energy and the environment, this work is beneficial for researchers to choose future research topics.


Abejón, R. (2018a). A bibliometric study of scientific publications regarding hemicellulose valorization during the 2000–2016 period: Identification of alternatives and hot topics. ChemEngineering, 2(1), 1–31. https://doi.org/10.3390/chemengineering2010007

Abejón, R., Pérez-Acebo, H., & Clavijo, L. (2018b). Alternatives for chemical and biochemical lignin valorization: Hot topics from a bibliometric analysis of the research published during the 2000-2016 period. Processes, 6(8). https://doi.org/10.3390/pr6080098

Ait Rass, H., Essayem, N., & Besson, M. (2015). Selective aerobic oxidation of 5-HMF into 2,5-furandicarboxylic acid with Pt catalysts supported on TiO2- and ZrO2- based supports. ChemSusChem, 8(7), 1206–1217. https://doi.org/10.1002/cssc.201403390

Anutrasakda, W., Eiamsantipaisarn, K., Jiraroj, D., Phasuk, A., Tuntulani, T., Liu, H., & Tungasmita, D. N. (2019). One-pot catalytic conversion of cellobiose to sorbitol over nickel phosphides supported on MCM-41 and Al-MCM-41. Catalysts, 9(1), 1–16. https://doi.org/10.3390/catal9010092

Armenise, S., SyieLuing, W., Ramírez-Velásquez, J. M., Launay, F., Wuebben, D., Ngadi, N., Rams, J., & Muñoz, M. (2021). Plastic waste recycling via pyrolysis: A bibliometric survey and literature review. Journal of Analytical and Applied Pyrolysis, 158. https://doi.org/10.1016/j.jaap.2021.105265

Atkins, P., Overton, T. L., Rourke, J. P., Weller, M. T., & Armstrong, F. A. (2010). Shriver and Atkins’ Inorganic Chemistry (Fifth Edition). W. H. Freeman and Company.

Aznar-Sánchez, J. A., García-Gómez, J. J., Velasco-Muñoz, J. F., & Carretero-Gómez, A. (2018). Mining waste and its sustainable management: Advances in worldwide research. Minerals, 8(7). https://doi.org/10.3390/min8070284

Barta, K., & Ford, P. C. (2014). Catalytic conversion of nonfood woody biomass solids to organic liquids. Accounts of Chemical Research, 47(5), 1503–1512. https://doi.org/10.1021/ar4002894

Binder, J. B., & Raines, R. T. (2009). Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. Journal of the American Chemical Society, 131(5), 1979–1985. https://doi.org/10.1021/ja808537j

Brandt, B. A., García-Aparicio, M. D. P., Görgens, J. F., & van Zyl, W. H. (2021). Rational engineering of Saccharomyces cerevisiae towards improved tolerance to multiple inhibitors in lignocellulose fermentations. Biotechnology for Biofuels, 14(1), 1–18. https://doi.org/10.1186/s13068-021-02021-w

Caiado, R. G. G., de Freitas Dias, R., Mattos, L. V., Quelhas, O. L. G., & Leal Filho, W. (2017). Towards sustainable development through the perspective of eco-efficiency - A systematic literature review. Journal of Cleaner Production, 165, 890–904. https://doi.org/10.1016/j.jclepro.2017.07.166

Chorkendorff, I., & Niemantsverdriet, J. W. (2007). Concepts of Modern Catalysis and Kinetics, Second Edition (Vol. 27). WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: https://doi.org/10.1016/B978-0-12-814523-4.00001-0

Choudhary, A., Kumar, V., Kumar, S., Majid, I., Aggarwal, P., & Suri, S. (2021). 5-Hydroxymethylfurfural (HMF) formation, occurrence and potential health concerns: recent developments. Toxin Reviews, 40(4), 545–561. https://doi.org/10.1080/15569543.2020.1756857

Da Costa Lopes, A. M., & Bogel-Lukasik, R. (2015). Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalysts. ChemSusChem, 8(6), 947–965. https://doi.org/10.1002/cssc.201402950

Dedes, G., Karnaouri, A., Marianou, A. A., Kalogiannis, K. G., Michailof, C. M., Lappas, A. A., & Topakas, E. (2021). Conversion of organosolv pretreated hardwood biomass into 5-hydroxymethylfurfural (HMF) by combining enzymatic hydrolysis and isomerization with homogeneous catalysis. Biotechnology for Biofuels, 14(1), 1–11. https://doi.org/10.1186/s13068-021-02022-9

Deng, W., Zhang, Q., & Wang, Y. (2015). Catalytic transformations of cellulose and its derived carbohydrates into 5-hydroxymethylfurfural, levulinic acid, and lactic acid. Science China Chemistry, 58(1), 29–46. https://doi.org/10.1007/s11426-014-5283-8

Dhepe, P. L., & Fukuoka, A. (2008). Cellulose conversion under heterogeneous catalysis. ChemSusChem, 1(12), 969–975. https://doi.org/10.1002/cssc.200800129

Dini, F. W., Helmiyati, H., & Krisnandi, Y. K. (2021). Cellulose and TiO2–ZrO2 nanocomposite as a catalyst for glucose conversion to 5-HMF. Bulletin of Chemical Reaction Engineering & Catalysis, 16(2), 320–330. https://doi.org/10.9767/bcrec.16.2.10320.320-330

Eminov, S., Filippousi, P., Brandt, A., Wilton-Ely, J. D. E. T., & Hallett, J. P. (2016). Direct catalytic conversion of cellulose to 5-Hydroxymethylfurfural using ionic liquids. Inorganics, 4(4), 1–15. https://doi.org/10.3390/inorganics4040032

Ferrari, G., Pezzuolo, A., Nizami, A.-S., & Marinello, F. (2020). Bibliometric Analysis of Trends in Biomass for. Energies, 13, 3714.

Fukuoka, A., & Dhepe, P. L. (2006). Catalytic conversion of cellulose into sugar alcohols. Angewandte Chemie - International Edition, 45(31), 5161–5163. https://doi.org/10.1002/anie.200601921

Gandini, A., Lacerda, T. M., Carvalho, A. J. F., & Trovatti, E. (2016). Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides. In Chemical Reviews (Vol. 116, Issue 3, pp. 1637–1669). American Chemical Society. https://doi.org/10.1021/acs.chemrev.5b00264

Gubbels, E., Jasinska-Walc, L., Noordover, B. A. J., & Koning, C. E. (2013). Linear and branched polyester resins based on dimethyl-2,5- furandicarboxylate for coating applications. European Polymer Journal, 49(10), 3188–3198. https://doi.org/10.1016/j.eurpolymj.2013.06.019

Hao, J., Song, X., Jia, S., Mao, W., Yan, Y., & Zhou, J. (2021). Catalytic conversion of starch to 5-hydroxymethylfurfural by tin phosphotungstate. Frontiers in Energy Research, 9(May), 1–10. https://doi.org/10.3389/fenrg.2021.679709

He, M., Guo, J., Wang, X., Song, Y., Liu, S. S., Wang, H., & Li, C. (2020). Direct conversion of cellulose into isosorbide over Ni doped NbOPO4 catalysts in water. New Journal of Chemistry, 44(25), 10292–10299. https://doi.org/10.1039/d0nj01403f

Helwani, Z., Othman, M. R., Aziz, N., Kim, J., & Fernando, W. J. N. (2009). Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Applied Catalysis A: General, 363(1–2), 1–10. https://doi.org/10.1016/j.apcata.2009.05.021

Huang, L., Zhang, Y., Guo, Y., Zhu, D., & Porter, A. L. (2014). Four dimensional science and technology planning: a new approach based on bibliometrics and technology roadmapping. Technological Forecasting and Social Change, 81(1), 39–48. https://doi.org/10.1016/j.techfore.2012.09.010

Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering george. Chemical Reviews, American Chemical Society, 106(9), 4044–4098. https://doi.org/10.1021/cr068360d

Kakaei, K., Esrafili, M. D., & Ehsani, A. (2019). Introduction to catalysis. In Interface Science and Technology (Vol. 27, pp. 1–21). Elsevier B.V. https://doi.org/10.1016/B978-0-12-814523-4.00001-0

Kang, S., Fu, J., & Zhang, G. (2018). From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renewable and Sustainable Energy Reviews, 94(March 2017), 340–362. https://doi.org/10.1016/j.rser.2018.06.016

Khatun, R., Xiang, H., Yang, Y., Wang, J., & Yildiz, G. (2021). Bibliometric analysis of research trends on the thermochemical conversion of plastics during 1990–2020. Journal of Cleaner Production, 317(7), 128373. https://doi.org/10.1016/j.jclepro.2021.128373

Kong, Q. S., Li, X. L., Xu, H. J., & Fu, Y. (2020). Conversion of 5-hydroxymethylfurfural to chemicals: A review of catalytic routes and product applications. In Fuel Processing Technology (Vol. 209). Elsevier B.V. https://doi.org/10.1016/j.fuproc.2020.106528

Koppram, R., Albers, E., & Olsson, L. (2012). Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnology for Biofuels, 5, 1–12. https://doi.org/10.1186/1754-6834-5-32

Kowalski, S., Lukasiewicz, M., Duda-Chodak, A., & Ziȩc, G. (2013). 5-hydroxymethyl-2-furfural (HMF) -heat-induced formation, occurrence in food and biotransformation - A review. Polish Journal of Food and Nutrition Sciences, 63(4), 207–225. https://doi.org/10.2478/v10222-012-0082-4

Kuo, I. J., Suzuki, N., Yamauchi, Y., & Wu, K. C. W. (2013). Cellulose to HMF conversion using crystalline mesoporous titania and zirconia nanocatalysts in ionic liquid systems. RSC Advances, 3(6), 2028–2034. https://doi.org/10.1039/c2ra21805d

Lawal, I. A., Klink, M., Ndungu, P., & Moodley, B. (2019). Brief bibliometric analysis of “ionic liquid” applications and its review as a substitute for common adsorbent modifier for the adsorption of organic pollutants. Environmental Research, 175(1), 34–51. https://doi.org/10.1016/j.envres.2019.05.005

Lewis Liu, Z., Ma, M., & Song, M. (2009). Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Molecular Genetics and Genomics, 282(3), 233–244. https://doi.org/10.1007/s00438-009-0461-7

Li, G., Liu, W., Ye, C., Li, X., & Si, C. L. (2018). Chemocatalytic conversion of cellulose into key platform chemicals. International Journal of Polymer Science, 2018. https://doi.org/10.1155/2018/4723573

Li, Y., Wang, Y., Rui, X., Li, Y., Li, Y., Wang, H., Zuo, J., & Tong, Y. (2017). Sources of atmospheric pollution: a bibliometric analysis. Scientometrics, 112(2), 1025–1045. https://doi.org/10.1007/s11192-017-2421-z

Li, Z., Liu, Y., Liu, C., Wu, S., & Wei, W. (2019). Direct conversion of cellulose into sorbitol catalyzed by a bifunctional catalyst. Bioresource Technology, 274(September 2018), 190–197. https://doi.org/10.1016/j.biortech.2018.11.089

Lin, Y., Cho, J., Tompsett, G. A., Westmoreland, P. R., & Huber, G. W. (2009). Kinetics Mechanism Cellulose Pyrolysis. Phys. Chem. C, 113, 20097–20107.

Liu, X., Min, X., Liu, H., Cao, Y., Liu, Y., Han, M., Sun, Z. M., & Ji, S. (2020). Efficient conversion of cellulose to 5-hydroxymethylfurfural catalyzed by a cobalt-phosphonate catalyst. Sustainable Energy and Fuels, 4(11), 5795–5801. https://doi.org/10.1039/d0se01006e

Liu, Y., Li, Z., You, Y., Zheng, X., & Wen, J. (2017). Synthesis of different structured FePO4 for the enhanced conversion of methyl cellulose to 5-hydroxymethylfurfural. RSC Advances, 7(81), 51281–51289. https://doi.org/10.1039/c7ra09186a

Lu, Y., He, Q., Peng, Q., Chen, W., Cheng, Q., Song, G., & Fan, G. (2021). Directional synthesis of furfural compounds from holocellulose catalyzed by sulfamic acid. Cellulose, 28(13), 8343–8354. https://doi.org/10.1007/s10570-021-04070-8

Ma, C., Cai, B., Zhang, L., Feng, J., & Pan, H. (2021). Acid-catalyzed conversion of cellulose into levulinic acid with biphasic solvent system. Frontiers in Plant Science, 12(March). https://doi.org/10.3389/fpls.2021.630807

Mahidin, Saifullah, Erdiwansyah, Hamdani, Hisbullah, Hayati, A. P., Zhafran, M., Sidiq, M. A., Rinaldi, A., Fitria, B., Tarisma, R., & Bindar, Y. (2020). Analysis of power from palm oil solid waste for biomass power plants: A case study in Aceh Province. Chemosphere, 253, 126714. https://doi.org/10.1016/j.chemosphere.2020.126714

Mao, G., Huang, N., Chen, L., & Wang, H. (2018). Research on biomass energy and environment from the past to the future: A bibliometric analysis. Science of the Total Environment, 635, 1081–1090. https://doi.org/10.1016/j.scitotenv.2018.04.173

Nabgan, W., Tuan Abdullah, T. A., Nabgan, B., Jalil, A. A., Nordin, A. H., Ul-Hamid, A., Hassan, N. S., Hussain, I., Coelho, A., Amin, A., & Ikram, M. (2021). Catalytic biohydrogen production from organic waste materials: A literature review and bibliometric analysis. International Journal of Hydrogen Energy, 46(60), 30903–30925. https://doi.org/10.1016/j.ijhydene.2021.04.100

Nogueira, J. S. M., Santana, V. T., Henrique, P. V., de Aguiar, L. G., Silva, J. P. A., Mussatto, S. I., & Carneiro, L. M. (2020). Production of 5-hydroxymethylfurfural from direct conversion of cellulose using heteropolyacid/Nb2O5 as catalyst. Catalysts, 10(12), 1–23. https://doi.org/10.3390/catal10121417

Nomura, T., Minami, E., & Kawamoto, H. (2021). Hydroxymethylfurfural as an intermediate of cellulose carbonization. ChemistryOpen, 10(6), 610–617. https://doi.org/10.1002/open.202000314

Op De Beeck, B., Dusselier, M., Geboers, J., Holsbeek, J., Morré, E., Oswald, S., Giebeler, L., & Sels, B. F. (2015). Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy and Environmental Science, 8(1), 230–240. https://doi.org/10.1039/c4ee01523a

Pachón Colmenares, M. A., Orjuela Abril, M. S., & Rojas Suárez, J. P. (2019). A bibliometric analysis of possible alternatives to achieve the replacement of cellulose acetate in cigarette filters from agricultural residues. Journal of Physics: Conference Series, 1386(1), 1–7. https://doi.org/10.1088/1742-6596/1386/1/012083

Pang, Q., Wang, L., Yang, H., Jia, L., Pan, X., & Qiu, C. (2014). Cellulose-derived carbon bearing -Cl and -SO3H groups as a highly selective catalyst for the hydrolysis of cellulose to glucose. RSC Advances, 40(78), 41212–41218. https://doi.org/10.1039/c4ra05520a

Peng, W. H., Lee, Y. Y., Wu, C., & Wu, K. C. W. (2012). Acid-base bi-functionalized, large-pored mesoporous silica nanoparticles for cooperative catalysis of one-pot cellulose-to-HMF conversion. Journal of Materials Chemistry, 22(43), 23181–23185. https://doi.org/10.1039/c2jm35391a

Pertile, G., Panek, J., Oszust, K., Siczek, A., Oleszek, M., Gryta, A., & Frąc, M. (2019). Effect of different organic waste on cellulose-degrading enzymes secreted by Petriella setifera in the presence of cellobiose and glucose. Cellulose, 26(13–14), 7905–7922. https://doi.org/10.1007/s10570-019-02633-4

Qiao, Y., Theyssen, N., & Hou, Z. (2015). Acid-catalyzed dehydration of fructose to 5-(Hydroxymethyl) furfural. Recyclable Catalysis, 2(1), 36–60. https://doi.org/10.1515/recat-2015-0006

Qiu, G., Chen, B., Huang, C., Liu, N., & Sun, X. (2020). Tin-modified ionic liquid polymer: A novel and efficient catalyst for synthesis of 5-hydroxymethylfurfural from glucose. Fuel, 268. https://doi.org/10.1016/j.fuel.2020.117136

Ravi, S., Choi, Y., & Choe, J. K. (2020). Achieving effective fructose-to-5-hydroxymethylfurfural conversion via facile synthesis of large surface phosphate-functionalized porous organic polymers. Applied Catalysis B: Environmental, 271(11), 118942. https://doi.org/10.1016/j.apcatb.2020.118942

Shapla, U. M., Solayman, M., Alam, N., Khalil, M. I., & Gan, S. H. (2018). 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chemistry Central Journal, 12(1), 1–18. https://doi.org/10.1186/s13065-018-0408-3

Shivhare, A., Kumar, A., & Srivastava, R. (2021). Metal phosphate catalysts to upgrade lignocellulose biomass into value-added chemicals and biofuels. Green Chemistry, 23(11), 3818–3841. https://doi.org/10.1039/d1gc00376c

Shylesh, S., Schünemann, V., & Thiel, W. R. (2010). Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis. Angewandte Chemie - International Edition, 49(20), 3428–3459. https://doi.org/10.1002/anie.200905684

Sousa, A. F., Fonseca, A. C., Serra, A. C., Freire, C. S. R., Silvestre, A. J. D., & Coelho, J. F. J. (2016). New unsaturated copolyesters based on 2,5-furandicarboxylic acid and their crosslinked derivatives. Polymer Chemistry, 7(5), 1049–1058. https://doi.org/10.1039/c5py01702e

Su, Y., Brown, H. M., Huang, X., Zhou, X. Dong, Amonette, J. E., & Zhang, Z. C. (2009). Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical. Applied Catalysis A: General, 361(1–2), 117–122. https://doi.org/10.1016/j.apcata.2009.04.002

Syafi’i, M. I., Nueangnoraj, K., & Boonyarattanakalin, S. (2021). The influence of H2O2 on the photocatalytic pretreatment of cellulose for 5-hydroxymethyl furfural (5-HMF) production. Bulletin of Chemical Reaction Engineering & Catalysis, 16(3), 565–570. https://doi.org/10.9767/BCREC.16.3.10311.565-570

Tian, Y., Zhou, X., Yang, Y., & Nie, L. (2020). Experimental analysis of air-steam gasification of biomass with coal-bottom ash. Journal of the Energy Institute, 93(1), 25–30. https://doi.org/10.1016/j.joei.2019.04.012

van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3

Verma, A. (2021). A bibliometric analysis and visualisation of research trends in nano diagnostic. Annals of the Romanian Society for Cell Biology, 25(1), 3658–3664.

Wattanapaphawong, P., Sato, O., Sato, K., Mimura, N., Reubroycharoen, P., & Yamaguchi, A. (2017). Conversion of cellulose to lactic acid by using ZrO2–Al2O3 catalysts. Catalysts, 7(7), 1–10. https://doi.org/10.3390/catal7070221

Weidener, D., Leitner, W., Domínguez de María, P., Klose, H., & Grande, P. M. (2021). Lignocellulose fractionation using recyclable phosphoric acid: lignin, cellulose, and furfural production. ChemSusChem, 14(3), 909–916. https://doi.org/10.1002/cssc.202002383

Xu, S., Pan, D., Li, W., Shen, P., Wu, Y., Song, X., Zhu, Y., Xu, N., Gao, L., & Xiao, G. (2018). Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurfural using an efficient and inexpensive manganese phosphate catalyst. Fuel Processing Technology, 181(September), 199–206. https://doi.org/10.1016/j.fuproc.2018.09.027

Yabushita, M., Kobayashi, H., & Fukuoka, A. (2014). Catalytic transformation of cellulose into platform chemicals. Applied Catalysis B: Environmental, 145(2010), 1–9. https://doi.org/10.1016/j.apcatb.2013.01.052

Yu, I. K. M., & Tsang, D. C. W. (2017). Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresource Technology, 238, 716–732. https://doi.org/10.1016/j.biortech.2017.04.026

Zhang, D., & Dumont, M. J. (2017). Advances in polymer precursors and bio-based polymers synthesized from 5-hydroxymethylfurfural. In Journal of Polymer Science, Part A: Polymer Chemistry (Vol. 55, Issue 9, pp. 1478–1492). John Wiley and Sons Inc. https://doi.org/10.1002/pola.28527

Zhang, T., Wei, H., Xiao, H., Li, W., Jin, Y., Wei, W., & Wu, S. (2020). Advance in constructing acid catalyst-solvent combinations for efficient transformation of glucose into 5-Hydroxymethylfurfural. In Molecular Catalysis (Vol. 498). Elsevier B.V. https://doi.org/10.1016/j.mcat.2020.111254

Zhang, Y., Yu, Q., & Li, J. (2021). Bioenergy research under climate change: a bibliometric analysis from a country perspective. Environmental Science and Pollution Research, 28(21), 26427–26440. https://doi.org/10.1007/s11356-021-12448-1

Zhao, Y., Lu, W. J., & Wang, H. T. (2009). Supercritical hydrolysis of cellulose for oligosaccharide production in combined technology. Chemical Engineering Journal, 150(2–3), 411–417. https://doi.org/10.1016/j.cej.2009.01.026



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.