Author ORCID Identifier
0009-0009-1179-2502
Article Classification
Sustainable Development
Abstract
Biodegradable foam has been vastly developed to replace polystyrene foam. However, its water absorption capacity has become a significant obstacle to being used in food packaging. Therefore, this study aims to assess the effect of incorporating natural waxes as a coating material in producing biodegradable foams. The four natural waxes are soy wax, candelilla wax, beeswax, and carnauba wax. The biodegradable foams were fabricated with cassava starch and rice straw as natural fiber sources using a thermal pressing machine. The Meyer-Rod coating method was adopted to produce high contact angle and highwater resistance starch-based biodegradable foams. Water absorption analysis was performed according to the Cobb60, and water solubility analysis was conducted based on International Standardization for Organization 10634:2018 procedure. The result shows that the surface modification of starch-based biodegradable foams with natural waxes significantly improved water absorbency and water solubility. Moreover, it is demonstrated that the use of carnauba wax had the highest decrease of Cobb60 index of 1.5 g/m2 and the lowest water solubility of 2% after carrying water for 90 min. This study concludes that the utilization of natural waxes a as a coating material for starch-based biodegradable foam could replace conventional polystyrene foam for food packaging industry.
References
Ago, M., Ferrer, A., & Rojas, O. J. (2016). Starch-based biofoams reinforced with lignocellulose nanofibrils from residual palm empty fruit bunches: Water sorption and mechanical strength. ACS Sustainable Chemistry & Engineering, 4(10), 5546-5552. https://doi.org/10.1021/acssuschemeng.6b01279
Aguirre-Joya, J. A., Cerqueira, M. A., Ventura-Sobrevilla, J., Aguilar-Gonzalez, M. A., Carbó-Argibay, E., Castro, L. P., & Aguilar, C. N. (2019). Candelilla wax-based coatings and films: Functional and physicochemical characterisation. Food and Bioprocess Technology, 12, 1787-1797. https://doi.org/10.1007/s11947-019-02339-2
Aranda-Ledesma, N. E., Bautista-Hernández, I., Rojas, R., Aguilar-Zárate, P., del Pilar Medina-Herrera, N., Castro-López, C., & Martínez-Ávila, G. C. G. (2022). Candelilla wax: Prospective suitable applications within the food field. LWT, 159, 113170. https://doi.org/10.1016/j.lwt.2022.113170
Araújo, J. R., Waldman, W. R., & De Paoli, M. A. (2008). Thermal properties of high density polyethylene composites with natural fibres: Coupling agent effect. Polymer Degradation and Stability, 93(10), 1770-1775. https://doi.org/10.1016/j.polymdegradstab.2008.07.021
Atta, O. M., Manan, S., Shahzad, A., Ul-Islam, M., Ullah, M. W., & Yang, G. (2022). Biobased materials for active food packaging: a review. Food Hydrocolloids, 125, 107419. https://doi.org/10.1016/j.foodhyd.2021.107419
Bruscato, C., Malvessi, E., Brandalise, R. N., & Camassola, M. (2019). High performance of macrofungi in the production of mycelium-based biofoams using sawdust—Sustainable technology for waste reduction. Journal of Cleaner Production, 234, 225-232. https://doi.org/10.1016/j.jclepro.2019.06.150
Bucio, A., Moreno-Tovar, R., Bucio, L., Espinosa-Dávila, J., & Anguebes-Franceschi, F. (2021). Characterisation of beeswax, candelilla wax and paraffin wax for coating cheeses. Coatings, 11(3), 261. https://doi.org/10.3390/coatings11030261
Buxoo, S., & Jeetah, P. (2020). Feasibility of producing biodegradable disposable paper cup from pineapple peels, orange peels and mauritian hemp leaves with beeswax coating. SN Applied Sciences, 2, 1-15. https://doi.org/10.1007/s42452-020-3164-7
Celik, N., Kiremitler, N. B., Ruzi, M., & Onses, M. S. (2021). Waxing the soot: Practical fabrication of all-organic superhydrophobic coatings from candle soot and carnauba wax. Progress in Organic Coatings, 153, 106169. https://doi.org/10.1016/j.porgcoat.2021.106169
Chaireh, S., Ngasatool, P., & Kaewtatip, K. (2020). Novel composite foam made from starch and water hyacinth with beeswax coating for food packaging applications. International Journal of Biological Macromolecules, 165, 1382-1391. https://doi.org/10.1016/j.ijbiomac.2020.10.007
Chen, Y., Liu, W., Xu, C., Liu, Y., He, J., Tian, D., Long, L., Yang, G., Zhang, X., & Zhang, Y. (2021). Synthesis of a novel superamphiphobic coating with a hierarchical three-dimensional structure inspired by bird’s nest. Applied Clay Science, 204, 106031. https://doi.org/10.1016/j.clay.2021.106031
Dao, T. G., Nguyen, T. T., Song, X., Wang, X., & Song, K. (2018). The effect of pretreatment method on the decorative effect of the wax furniture. IOP Conference Series: Materials Science and Engineering, 452(2), 22009. https://doi.org/10.1088/1757-899X/452/2/022009
de Castro e Silva, P., de Oliveira, A. C. S., Pereira, L. A. S., Valquíria, M., Carvalho, G. R., Miranda, K. W. E., Marconcini, J. M., & Oliveira, J. E. (2020). Development of bionanocomposites of pectin and nanoemulsions of carnauba wax and neem oil pectin/carnauba wax/neem oil composites. Polymer Composites, 41(3), 858-870. https://doi.org/10.1002/pc.25416
de Freitas, C. A. S., de Sousa, P. H. M., Soares, D. J., da Silva, J. Y. G., Benjamin, S. R., & Guedes, M. I. F. (2019). Carnauba wax uses in food–A review. Food Chemistry, 291, 38–48. https://doi.org/10.1016/j.foodchem.2019.03.133
Devi, L. S., Kalita, S., Mukherjee, A., & Kumar, S. (2022). Carnauba wax-based composite films and coatings: recent advancement in prolonging post-harvest shelf-life of fruits and vegetables. Trends in Food Science & Technology, 129 (November 2022), 296-305 https://doi.org/10.1016/j.tifs.2022.09.019
Diyana, Z. N., Jumaidin, R., Selamat, M. Z., & Suan, M. S. M. (2021). Thermoplastic starch/beeswax blend: characterisation on thermal mechanical and moisture absorption properties. International Journal of Biological Macromolecules, 190, 224-232. https://doi.org/10.1016/j.ijbiomac.2021.08.201
Donati, N., Spada, J. C., & Tessaro, I. C. (2022). Recycling rice husk ash as a filler on biodegradable cassava starch-based foams. Polymer Bulletin, 1-18. https://doi.org/10.1007/s00289-022-04557-9
Falua, K. J., Pokharel, A., Babaei-Ghazvini, A., Ai, Y., & Acharya, B. (2022). Valorisation of starch to biobased materials: a review. Polymers, 14(11), 2215. https://doi.org/10.3390/polym14112215
Forsman, N., Johansson, L.-S., Koivula, H., Tuure, M., Kääriäinen, P., & Österberg, M. (2020). Open coating with natural wax particles enables scalable, non-toxic hydrophobation of cellulose-based textiles. Carbohydrate Polymers, 227, 115363. https://doi.org/10.1016/j.carbpol.2019.115363
Galus, S., Gaouditz, M., Kowalska, H., & Debeaufort, F. (2020). Effects of candelilla and carnauba wax incorporation on the functional properties of edible sodium caseinate films. International Journal of Molecular Sciences, 21(24), 9349. https://doi.org/10.3390/ijms21249349
Gupta, S., Ivvala, J., & Grewal, H. S. (2021). Development of natural wax based durable superhydrophobic coatings. Industrial Crops and Products, 171, 113871. https://doi.org/10.1016/j.indcrop.2021.113871
Habashy, R., Khoder, M., Zhang, S., Pereira, B., Bohus, M., Wang, J. T.-W., Isreb, A., & Alhnan, M. A. (2020). An innovative wax-based enteric coating for pharmaceutical and nutraceutical oral products. International Journal of Pharmaceutics, 591, 119935. https://doi.org/10.1016/j.ijpharm.2020.119935
Hafila, K. Z., Jumaidin, R., Ilyas, R. A., Selamat, M. Z., & Yusof, F. A. M. (2022). Effect of palm wax on the mechanical, thermal, and moisture absorption properties of thermoplastic cassava starch composites. International Journal of Biological Macromolecules, 194, 851–860. https://doi.org/10.1016/j.ijbiomac.2021.11.139
Indarti, E., Muliani, S., & Yunita, D. (2023). Characteristics of biofoam cups made from sugarcane bagasse with rhizopus oligosporus as binding agent. Advances in Polymer Technology, 2023. https://doi.org/10.1155/2023/8257317
Iriani, E. S., Irawadi, T. T., Sunarti, T. C., Richana, N., & Yuliasih, I. (2015). Effect of corn hominy and polyvinyl alcohol on mechanical properties of cassava starch-baked foam. Polymer-Plastics Technology and Engineering, 54(3), 282-289. https://doi.org/10.1080/03602559.2014.977423
Janesch, J., Arminger, B., Gindl-Altmutter, W., & Hansmann, C. (2020). Superhydrophobic coatings on wood made of plant oil and natural wax. Progress in Organic Coatings, 148, 105891. https://doi.org/10.1016/j.porgcoat.2020.105891
Jiang, T., Duan, Q., Zhu, J., Liu, H., & Yu, L. (2020). Starch-based biodegradable materials: Challenges and opportunities. Advanced Industrial and Engineering Polymer Research, 3(1), 8-18. https://doi.org/10.1016/j.aiepr.2019.11.003
Kaisangsri, N., Kerdchoechuen, O., & Laohakunjit, N. (2012). Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Industrial Crops and Products, 37(1), 542–546. https://doi.org/10.1016/j.indcrop.2011.07.034
Meng, L., Liu, H., Yu, L., Duan, Q., Chen, L., Liu, F., Shao, Z., Shi, K., & Lin, X. (2019). How water acting as both blowing agent and plasticiser affect on starch-based foam. Industrial Crops and Products, 134, 43-49. https://doi.org/10.1016/j.indcrop.2019.03.056
Miranda, M., Sun, X., Marín, A., Dos Santos, L. C., Plotto, A., Bai, J., Assis, O. B. G., Ferreira, M. D., & Baldwin, E. (2022). Nano-and micro-sized carnauba wax emulsions-based coatings incorporated with ginger essential oil and hydroxypropyl methylcellulose on papaya: Preservation of quality and delay of post-harvest fruit decay. Food Chemistry: X, 13, 100249. https://doi.org/10.1016/j.fochx.2022.100249
Nasrin, T. A. A., Rahman, M. A., Arfin, M. S., Islam, M. N., & Ullah, M. A. (2020). Effect of novel coconut oil and beeswax edible coating on post-harvest quality of lemon at ambient storage. Journal of Agriculture and Food Research, 2, 100019. https://doi.org/10.1016/j.jafr.2019.100019
Nicu, R., Lupei, M., Balan, T., & Bobu, E. (2013). Alkyl-chitosan as paper coating material to improve water barrier properties. Cellulose Chemistry and Technology, 47(7–8), 623-630.
Omar-Aziz, M., Khodaiyan, F., Yarmand, M. S., Mousavi, M., Gharaghani, M., Kennedy, J. F., & Hosseini, S. S. (2021). Combined effects of octenylsuccination and beeswax on pullulan films: Water-resistant and mechanical properties. Carbohydrate Polymers, 255, 117471. https://doi.org/10.1016/j.carbpol.2020.117471
Orhan, N. O., & Eroglu, Z. (2022). Structural characterisation and oxidative stability of black cumin oil oleogels prepared with natural waxes. Journal of Food Processing and Preservation, e17211. https://doi.org/10.1111/jfpp.17211
Pérez-Vergara, L. D., Cifuentes, M. T., Franco, A. P., Pérez-Cervera, C. E., & Andrade-Pizarro, R. D. (2020). Development and characterisation of edible films based on native cassava starch, beeswax, and propolis. NFS Journal, 21, 39-49. https://doi.org/10.1016/j.nfs.2020.09.002
Poletto, M., Dettenborn, J., Zeni, M., & Zattera, A. J. (2011). Characterisation of composites based on expanded polystyrene wastes and wood flour. Waste Management, 31(4), 779-784. https://doi.org/10.1016/j.wasman.2010.10.027
Pratiwi, R., Rahayu, D., & Barliana, M. I. (2016). Pemanfaatan selulosa dari limbah jerami padi (Oryza sativa) sebagai bahan bioplastik. Indonesian Journal of Pharmaceutical Science and Technology, 3(3), 83-91. https://doi.org/10.15416/ijpst.v3i3.9406
Raimondi, G., Maucieri, C., Toffanin, A., Renella, G., & Borin, M. (2021). Smart fertilisers: What should we mean and where should we go? Italian Journal of Agronomy, 16(2). https://doi.org/10.4081/ija.2021.1794
Reis, M. O., Olivato, J. B., Bilck, A. P., Zanela, J., Grossmann, M. V. E., & Yamashita, F. (2018). Biodegradable trays of thermoplastic starch/poly (lactic acid) coated with beeswax. Industrial Crops and Products, 112, 481-487. https://doi.org/10.1016/j.indcrop.2017.12.045
Romani, V. P., Olsen, B., Collares, M. P., Oliveira, J. R. M., Prentice, C., & Martins, V. G. (2020). Cold plasma and carnauba wax as strategies to produce improved bi-layer films for sustainable food packaging. Food Hydrocolloids, 108, 106087. https://doi.org/10.1016/j.foodhyd.2020.106087
Salam, A., Pawlak, J. J., Venditti, R. A., & El-tahlawy, K. (2010). Synthesis and characterisation of starch citrate−chitosan foam with superior water and saline absorbance properties. Biomacromolecules, 11(6), 1453-1459. https://doi.org/10.1021/bm1000235
Shen, T., Fan, S., Li, Y., Xu, G., & Fan, W. (2020). Preparation of edible non-wettable coating with soybean wax for repelling liquid foods with little residue. Materials, 13(15), 3308. https://doi.org/10.3390/ma13153308
Soleimanian, Y., Goli, S. A. H., Shirvani, A., Elmizadeh, A., & Marangoni, A. G. (2020). Wax‐based delivery systems: Preparation, characterisation, and food applications. Comprehensive Reviews in Food Science and Food Safety, 19(6), 2994-3030. https://doi.org/10.1111/1541-4337.12614
Spada, J. C., Jasper, A., & Tessaro, I. C. (2020). Biodegradable cassava starch based foams using rice husk waste as macro filler. Waste and Biomass Valorization, 11, 4315-4325. https://doi.org/10.1007/s12649-019-00776-w
Srisuwan, Y., & Baimark, Y. (2021). Improvement of water resistance of thermoplastic starch foams by dip-coating with biodegradable polylactide-b-polyethylene glycol-b-polylactide copolymer and its blend with poly (D-lactide). Progress in Organic Coatings, 151, 106074. https://doi.org/10.1016/j.porgcoat.2020.106074
Surendran, A. N., Ajjarapu, K. P. K., Arumugham, A. A., Kate, K., & Satyavolu, J. (2022). Characterisation of industry grade soybean wax for potential applications in natural fiber reinforced composite (NFRC) filaments. Industrial Crops and Products, 186, 115163. https://doi.org/10.1016/j.indcrop.2022.115163
Tapia-Blácido, D. R., Aguilar, G. J., de Andrade, M. T., Rodrigues-Júnior, M. F., & Guareschi-Martins, F. C. (2022). Trends and challenges of starch-based foams for use as food packaging and food container. Trends in Food Science & Technology, 119, 257-271. https://doi.org/10.1016/j.tifs.2021.12.005
Torun, I., Ruzi, M., Er, F., & Onses, M. S. (2019). Superhydrophobic coatings made from biocompatible polydimethylsiloxane and natural wax. Progress in Organic Coatings, 136, 105279. https://doi.org/10.1016/j.porgcoat.2019.105279
Wahyuningsih, K., Iriani, E. S., & Yuanita, E. (2020). Characterisation of migration rate and biodegradability of cassava starch‐based biofoam modified with alkyl ketene dimer. Macromolecular Symposia, 391(1), 1900131. https://doi.org/10.1002/masy.201900131
Wang, F., Lei, S., Ou, J., Li, C., & Li, W. (2019). Novel all-natural material for oil/water separation. Industrial & Engineering Chemistry Research, 58(5), 1924-1931. https://doi.org/10.1021/acs.iecr.8b05535
Wardani, L. K., & Hendrawati, N. (2021). Kajian literatur karakteristik biodegradable polymer berbahan baku pati dengan penambahan filler dan beeswax. distilat: jurnal teknologi separasi, 7(2), 333–340. https://doi.org/10.33795/distilat.v7i2.246
Woch, J., Małachowska, E., Korasiak, K., Lipkiewicz, A., Dubowik, M., Chrobak, J., Iłowska, J., & Przybysz, P. (2022). barrier coatings containing natural and paraffin waxes. Molecules 27(3) https://doi.org/10.3390/molecules27030930
Yoo, J., Chang, S. J., Wi, S., & Kim, S. (2019). Spent coffee grounds as supporting materials to produce bio-composite PCM with natural waxes. Chemosphere, 235, 626-635. https://doi.org/10.1016/j.chemosphere.2019.06.195
York, D. W., Collins, S., & Rantape, M. (2019). Measuring the permeability of thin solid layers of natural waxes. Journal of Colloid and Interface Science, 551, 270-282. https://doi.org/10.1016/j.jcis.2019.03.104
Zhang, Yi, Simpson, B. K., & Dumont, M.-J. (2018). Effect of beeswax and carnauba wax addition on properties of gelatin films: a comparative study. Food Bioscience, 26, 88-95. https://doi.org/10.1016/j.fbio.2018.09.011
Zhang, Y., Liao, J., Li, J., Guo, S., Mo, L., Liu, Z., & Xiong, Q. (2022). Synthesis of a robust, water-stable, and biodegradable pulp foam by poly-lactic acid coating towards a zero-plastic earth. Environmental Pollution, 306, 119450. https://doi.org/10.1016/j.envpol.2022.119450
Recommended Citation
Alexander, Ikbal; Sodri, Ahyahudin; and Mizuno, Kosuke
(2023).
THE EFFECT OF DIFFERENT NATURAL WAXES TO HYDROPHOBIC PROPERTIES OF STARCH-BASED BIODEGRADABLE FOAMS.
Journal of Environmental Science and Sustainable Development, 6(1), 86-101.
Available at: https://doi.org/10.7454/jessd.v6i1.1199