•  
  •  
 

Author ORCID Identifier

0000-0002-6956-2816

Article Classification

Environmental Science

Abstract

Many studies have shown the relationship between meteorological elements and air quality. However, some aspects of the relationship are unknown, particularly in Indonesia, which has a variety of topographical landscapes and climatic conditions. This study seeks to define the relationship between meteorological variables and the diurnal pattern of three pollutants that contributes to the so-called Indeks Standard Pencemar Udara (ISPU), similar to the Air Quality Index (AQI), in a remote area in Bukit Kototabang, West Sumatra, Indonesia. The three parameters, namely Particulate Matter 10 micrometers (PM10), carbon monoxide (CO), and tropospheric ozone (O3), were correlated with diurnal variations in temperature and relative humidity in the months of maximum rainfall and minimum rainfall in 2020. The T-test was used to obtain each parameter's mean and variance sizes and the significant differences among the parameters. The results showed that PM10 has a significant distribution when high and low rainfall, but no significant relationship exists between temperature and relative humidity. Carbon monoxide has significant fluctuations to differences in rainfall and diurnal variations in air temperature. Meanwhile, O3 shows a weak correlation to the rainfall variation but has a high correlation to diurnal variations in the temperature and relative humidity. The results suggest that air temperature can significantly affect the diurnal concentration of pollutants, which involves photochemical reactions in their formation, such as ozone and carbon monoxide. It also shows the potential for worse air quality during the low rainfall. As the pollutant level can be higher during the dry season compared to the rainy season, efforts to reduce the pollutant emission during the dry season, like forest and land fires, need to gain more attention.

References

Alfiandy, S., & Davi, R. S. (2020). Analysis of statistical models for forecasting PM10 in Kototabang region. Journal of Physics: Conference Series, 1434(1). https://doi.org/10.1088/1742-6596/1434/1/012011

Bogusz, J., Kłos, A., Grzempowski, P., & Kontny, B. (2014). Modelling the Velocity Field in a Regular Grid in the Area of Poland on the Basis of the Velocities of European Permanent Stations. Pure and Applied Geophysics, 171(6), 809-833. https://doi.org/10.1007/s00024-013-0645-2

Chen, S., Wang, H., Lu, K., Zeng, L., Hu, M., & Zhang, Y. (2020). The trend of surface ozone in Beijing from 2013 to 2019: Indications of the persisting strong atmospheric oxidation capacity. Atmospheric Environment, 242. https://doi.org/10.1016/j.atmosenv.2020.117801

Daoud, J. I. (2018). Multicollinearity and Regression Analysis. Journal of Physics: Conference Series, 949(1). https://doi.org/10.1088/1742-6596/949/1/012009

Du, Q., Zhao, C., Zhang, M., Dong, X., Chen, Y., Liu, Z., ... & Miao, S. (2020). Modeling diurnal variation of surface PM 2.5 concentrations over East China with WRF-Chem: Impacts from boundary-layer mixing and anthropogenic emission. Atmospheric Chemistry and Physics, 20(5), 2839-2863. https://doi.org/10.5194/acp-2019-739

Empa. (2019). System and Performance Audit of Surface Ozone, Carbon Monoxide, Methane, and Carbon Dioxide at The Global GAW Station Bukit Kototabang Indonesia January 2019. https://www.empa.ch/documents/56101/250799/Bukit_Koto_Tabang_2019.pdf/4a899e2b-9984-4948-a4d0-748781de84f5

Gu, Y., Li, K., Xu, J., Liao, H., & Zhou, G. (2020). Observed dependence of surface ozone on increasing temperature in Shanghai, China. Atmospheric Environment, 221. https://doi.org/10.1016/j.atmosenv.2019.117108

Hernandez, G., Berry, T. A., Wallis, S., & Poyner, D. (2017). Temperature and humidity effects on particulate matter concentrations in a sub-tropical climate during winter. https://doi.org/10.7763/ipcbee.2017.v102.10

Hou, P., & Wu, S. (2016). Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality. Scientific Reports, 6. https://doi.org/10.1038/srep23792

Indonesian Agency for Meteorological, Climatological, and Geophysical (BMKG). (2022). Buku Pemutakhiran Zona Musim di Indonesia Periode 1991-2020. https://iklim.bmkg.go.id/bmkgadmin/storage/buletin/Buku_ZOM9120_versi_cetak.pdf

Indonesian Ministry of Environment and Forestry. (2020a). Indeks Standar Pencemar Udara (ISPU) Sebagai Informasi Mutu Udara Ambien Di Indonesia. https://ditppu.menlhk.go.id/portal/read/indeks-standar-pencemar-udara-ispu-sebagai-informasi-mutu-udara-ambien-di-indonesia

Indonesian Ministry of Environment and Forestry (2020b). Peraturan Menteri LHK tentang Indeks Standar Pencemar, Pub. L. No. P.14/MENLHK /SETJEN/KUM.1/7/2020. https://ditppu.menlhk.go.id/portal/uploads/news/1600940556_P_14_2020_ISPU_menlhk_07302020074834.pdf

Jiang, W. (2021). The Data Analysis of Shanghai Air Quality Index Based on Linear Regression Analysis. Journal of Physics: Conference Series, 1813(1). https://doi.org/10.1088/1742-6596/1813/1/012031

Kalisa, W., Igbawua, T., Henchiri, M., Ali, S., Zhang, S., Bai, Y., & Zhang, J. (2019). Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-53150-0

Kim, T.K. (2015). Statistic and Probability. Korean Journal of Anesthesiology. http://ekja.org

Kliengchuay, W., Worakhunpiset, S., Limpanont, Y., Meeyai, A. C., & Tantrakarnapa, K. (2021). Influence of the meteorological conditions and some pollutants on PM10 concentrations in Lamphun, Thailand. Journal of Environmental Health Science and Engineering, 19(1), 237-249. https://doi.org/10.1007/s40201-020-00598-2

Kliengchuay, W., Cooper Meeyai, A., Worakhunpiset, S., & Tantrakarnapa, K. (2018). Relationships between meteorological parameters and particulate matter in Mae Hong Son province, Thailand. International Journal of Environmental Research and Public Health, 15(12), 2801. https://doi.org/10.3390/ijerph15122801

Krivoshein, Y. O., Tolstykh, A. v., Tsvetkov, N. A., & Khutornoy, A. N. (2020). Mathematical model for calculating solar radiation on horizontal and inclined surfaces for the conditions of Yakutsk. IOP Conference Series: Earth and Environmental Science, 408(1). https://doi.org/10.1088/1755-1315/408/1/012002

Kwak, H. Y., Ko, J., Lee, S., & Joh, C. H. (2017). Identifying the correlation between rainfall, traffic flow performance and air pollution concentration in Seoul using a path analysis. Transportation Research Procedia, 25, 3552-3563. https://doi.org/10.1016/j.trpro.2017.05.288

Lesik, S.A. (2019). Applied Statistical Inference with MINITAB ® (2nd ed.). Chapman and Hall/CRC. https://doi.org/https://doi.org/10.1201/9780429444951

Liu, F., Tan, Q. W., Jiang, X., Jiang, W. J., & Song, D. L. (2018). Effect of relative humidity on particulate matter concentration and visibility during winter in Chengdu. Huan jing ke xue= Huanjing kexue, 39(4), 1466-1472. https://doi.org/10.13227/j.hjkx.201707112

Li, W., Shi, Y., Gao, L., Wu, C., Liu, J., & Cai, Y. (2018). Occurrence, distribution and risk of organophosphate esters in urban road dust in Beijing, China. Environmental Pollution, 241, 566-575. https://doi.org/10.1016/j.envpol.2018.05.092

Li, Y., Zhang, J., Sailor, D. J., & Ban-Weiss, G. A. (2019). Effects of urbanization on regional meteorology and air quality in Southern California. Atmospheric Chemistry and Physics, 19(7), 4439-4457. https://doi.org/10.5194/acp-19-4439-2019

Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H., Zhang, H., & Zhu, B. (2017). Aerosol and boundary-layer interactions and impact on air quality. In National Science Review (Vol. 4, Issue 6, pp. 810–833). Oxford University Press. https://doi.org/10.1093/nsr/nwx117

Mohtar, A. A. A., Latif, M. T., Baharudin, N. H., Ahamad, F., Chung, J. X., Othman, M., & Juneng, L. (2018). Variation of major air pollutants in different seasonal conditions in an urban environment in Malaysia. In Geoscience Letters (Vol. 5, Issue 1). SpringerOpen. https://doi.org/10.1186/s40562-018-0122-y

Nguyen, J. L., & Dockery, D. W. (2016). Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions. International Journal of Biometeorology, 60(2), 221-229. https://doi.org/10.1007/s00484-015-1019-5

Nurdiati, S., Khatizah, E., Najib, M. K., & Hidayah, R. R. (2021). Analysis of rainfall patterns in Kalimantan using fast fourier transform (FFT) and empirical orthogonal function (EOF). IOP Conference Series: Earth and Environmental Science, 1796(1). https://doi.org/10.1088/1742-6596/1796/1/012053

Olszowski, T. (2016). Changes in PM10 concentration due to large-scale rainfall. Arabian Journal of Geosciences, 9(2), 1-11. https://doi.org/10.1007/s12517-015-2163-2

Pancholi, P., Kumar, A., Bikundia, D. S., & Chourasiya, S. (2018). An observation of seasonal and diurnal behavior of O3–NOx relationships and local/regional oxidant (OX = O3 + NO2) levels at a semi-arid urban site of western India. Sustainable Environment Research, 28(2), 79-89. https://doi.org/10.1016/j.serj.2017.11.001

Paraschiv, S., & Paraschiv, L. S. (2019, September). Effects of wind speed, relative humidity, temperature and air pressure on PM10 concentration for an urban background area. In IOP Conference Series: Materials Science and Engineering (Vol. 595, No. 1, p. 012059). IOP Publishing. http://dx.doi.org/10.1088/1757-899X/595/1/012059

Paris, O., San, D., Singapore, F., Tokyo, S., Monteith, J. L., & Unsworth, M. H. (2013). Principles of Environmental Physics Plants, Animals, and the Atmosphere Fourth Edition. http://elsevier.com/locate/permissions

Perera, F. P. (2017). Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environmental health perspectives, 125(2), 141-148. http://dx.doi.org/10.1289/EHP299

Prasad, Y. S., & Rao, B. V. (2018). Groundwater depletion and groundwater balance studies of Kandivalasa river sub basin, Vizianagaram district, Andhra Pradesh, India. Groundwater for Sustainable Development, 6, 71-78. https://doi.org/10.1016/j.gsd.2017.11.003

Ribeiro, I. O., do Santos, E. O., Batista, C. E., Fernandes, K. S., Ye, J., Medeiros, A. S., ... & de Souza, R. A. (2020). Impact of biomass burning on a metropolitan area in the Amazon during the 2015 El Niño: The enhancement of carbon monoxide and levoglucosan concentrations. Environmental Pollution, 260, 114029. https://doi.org/10.1016/j.envpol.2020.114029

Strode, S. A., Ziemke, J. R., Oman, L. D., Lamsal, L. N., Olsen, M. A., & Liu, J. (2019). Global changes in the diurnal cycle of surface ozone. Atmospheric Environment, 199, 323-333. https://doi.org/10.1016/j.atmosenv.2018.11.028

Supeni, A., Permadi, D. A., Gunawan, D., Dayantolis, W., & Suwarman, R. (2021). Variability of PM10 in a Global Atmosphere Watch Station near the equator. IOP Conference Series: Earth and Environmental Science, 724(1). https://doi.org/10.1088/1755-1315/724/1/012051

Tareen, A. D. K., Nadeem, M. S. A., Kearfott, K. J., Abbas, K., Khawaja, M. A., & Rafique, M. (2019). Descriptive analysis and earthquake prediction using boxplot interpretation of soil radon time series data. Applied Radiation and Isotopes, 154. https://doi.org/10.1016/j.apradiso.2019.108861

Utami, A. I., Nasution, R. I., & Asnia, M. (2021). Effect of ozone precursors on surface ozone variations in GAW Kototabang and Cibeureum. IOP Conference Series: Earth and Environmental Science, 893(1). https://doi.org/10.1088/1755-1315/893/1/012073

Verma, N., Satsangi, A., Lakhani, A., Kumari, K. M., & Lal, S. (2017). Diurnal, Seasonal, and Vertical Variability in Carbon Monoxide Levels at a Semi-Urban Site in India. Clean - Soil, Air, Water, 45(5). https://doi.org/10.1002/clen.201600432

Vižintin, G., Kocjančič, M., & Vulić, M. (2016). Study of Coal Burst Source Locations in the Velenje Colliery. Energies, 9(7), 507. https://doi.org/10.3390/en9070507

Wang, Z., Lv, J., Tan, Y., Guo, M., Gu, Y., Xu, S., & Zhou, Y. (2019). Temporospatial variations and Spearman correlation analysis of ozone concentrations to nitrogen dioxide, sulfur dioxide, particulate matters and carbon monoxide in ambient air, China. Atmospheric Pollution Research, 10(4), 1203-1210. https://doi.org/10.1016/j.apr.2019.02.003

Widén, J., & Munkhammar, J. (2019). Solar Radiation Theory. In Solar Radiation Theory. Uppsala University. https://doi.org/10.33063/diva-381852

World Health Organozation (WHO). (2015). Ambient air pollution: A global assessment of exposure and burden of disease. https://apps.who.int/iris/bitstream/handle/10665/250141/9789241511353-eng.pdf

World Meteorological Organization (WMO). (2001). World Meteorological Organization Global Atmosphere Watch Global Atmosphere Watch Measurements Guide. In WMO Publication. https://library.wmo.int/index.php?lvl=notice_display&id=11075#.Yi09w3pBw2w

World Meteorological Organization (WMO). (2017). GAW Report No. 228 - Implementation Plan: 2016-2023. https://library.wmo.int/doc_num.php?explnum_id=3395

Zambrano-Monserrate, M. A., María, &, & Ruano, A. (2020). Has air quality improved in Ecuador during the COVID-19 pandemic? A parametric analysis. Air Quality, Atmosphere & Health. https://doi.org/10.1007/s11869-020-00866-y/Published

Zhai, B., Chen, J., Yin, W., & Huang, Z. (2018). Relevance analysis on the variety characteristics of PM2.5 concentrations in Beijing, China. Sustainability (Switzerland), 10(9). https://doi.org/10.3390/su10093228

Zhang, L., Zhang, Z., Chen, L., & McNulty, S. (2019). An investigation on the leaf accumulation-removal efficiency of atmospheric particulate matter for five urban plant species under different rainfall regimes. Atmospheric Environment, 208, 123-132. https://doi.org/10.1016/j.atmosenv.2019.04.010

Zhao, S., Yu, Y., Yin, D., Qin, D., He, J., & Dong, L. (2018). Spatial patterns and temporal variations of six criteria air pollutants during 2015 to 2017 in the city clusters of Sichuan Basin, China. Science of the total environment, 624, 540-557. https://doi.org/10.1016/j.scitotenv.2017.12.172

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.