Author ORCID Identifier
0000-0001-7728-5524
Article Classification
Environmental Science
Abstract
Eutrophication has become a serious environmental problem because of the excessive amounts of nitrogen and phosphorus in the water. Aquaculture waste is one of the drivers of eutrophication. Seaweed is known for its ability to remove nutrients from the water. In Indonesia, research about the efficiency of seaweed in decreasing nutrient concentration in wastewater is still rare. This article reviewed the use of seaweed as an adsorbent for nitrogen and phosphorus removal. This review aims to summarize the efficiency of nutrient removal in various genera of macroalgae. The comparing bioremediation potentials of macroalgae, including growth, nutrient bioaccumulation capacity, and potential nutrient uptake, are discussed. The factors influencing nutrient uptake will also be addressed in this study. The literature was collected from ScienceDirect and Google Scholar databases. This paper found that red algae from the genus Gracilaria were the most widely used as bioremediation agents compared to other genera. This article is expected to be useful as a basis for selecting seaweed to be used as a bioremediation agent. We hope that there will be more research on seaweed as a bioadsorbent in Indonesia.
References
Abreu, M. H., Pereira, R., Buschmann, A. H., Sousa-Pinto, I., & Yarish, C. (2011). Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. Journal of Experimental Marine Biology and Ecology, 407(2), 190-199. https://doi.org/10.1016/j.jembe.2011.06.034
Alstyne, K. L. Van. (2016). Seasonal changes in nutrient limitation and nitrate sources in the green macroalga Ulva lactuca at sites with and without green tides in a northeastern Pacific embayment. Marine Pollution Bulletin, 103(1-2), 186-194. https://doi.org/10.1016/j.marpolbul.2015.12.020
Anderson, D. M., Fensin, E., Gobler, C. J., Hoeglund, A. E., Hubbard, K. A., Kulis, D. M., ... & Trainer, V. L. (2021). Marine harmful algal blooms (HABs) in the United States: History, current status and future trends. Harmful Algae, 102, 101975. https://doi.org/10.1016/j.hal.2021.101975
Areco, M. M., Salomone, V. N., & Afonso, M. dos S. (2021). Ulva lactuca: A bioindicator for anthropogenic contamination and its environmental remediation capacity. Marine Environmental Research, 171(August). https://doi.org/10.1016/j.marenvres.2021.105468
Arumugam, N., Chelliapan, S., Kamyab, H., Thirugnana, S., Othman, N., & Nasri, N. S. (2018). Treatment of wastewater using seaweed: A review. International Journal of Environmental Research and Public Health, 15(12), 1-17. https://doi.org/10.3390/ijerph15122851
Badraeni, Azis, H. Y., Tresnati, J., & Tuwo, A. (2020). Seaweed Gracilaria changii as a bioremediator agent for ammonia, nitrite and nitrate in controlled tanks of Whiteleg Shrimp Litopenaeus vannamei. IOP Conference Series: Earth and Environmental Science, 564(1). https://doi.org/10.1088/1755-1315/564/1/012059
Ben-Ari, T., Neori, A., Ben-Ezra, D., Shauli, L., Odintsov, V., & Shpigel, M. (2014). Management of Ulva lactuca as a biofilter of mariculture effluents in IMTA system. Aquaculture, 434, 493-498. https://doi.org/10.1016/j.aquaculture.2014.08.034
Bews, E., Booher, L., Polizzi, T., Long, C., Kim, J. H., & Edwards, M. S. (2021). Effects of salinity and nutrients on metabolism and growth of Ulva lactuca: Implications for bioremediation of coastal watersheds. Marine Pollution Bulletin, 166(February). https://doi.org/10.1016/j.marpolbul.2021.112199
Bharathiraja, B., Chakravarthy, M., Kumar, R. R., Yogendran, D., Yuvaraj, D., Jayamuthunagai, J., ... & Palani, S. (2015). Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products. Renewable and Sustainable Energy Reviews, 47, 634-653. https://doi.org/10.1016/j.rser.2015.03.047
Buschmann, A. H., Troell, M., Kautsky, N., & Kautsky, L. (1996). Integrated tank cultivation of salmonids and Gracilaria chilensis (Gracilariales, Rhodophyta). Hydrobiologia, 326–327, 75-82. https://doi.org/10.1007/BF00047789
Buschmann, A. H., Varela, D. A., Hernández-González, M. C., & Huovinen, P. (2008). Opportunities and challenges for the development of an integrated seaweed-based aquaculture activity in Chile: Determining the physiological capabilities of Macrocystis and Gracilaria as biofilters. Journal of Applied Phycology, 20(5), 571-577. https://doi.org/10.1007/s10811-007-9297-x
Buschmann, A. H., Varela, D. A., Hernández-González, M. C., & Huovinen, P. (2009). Opportunities and challenges for the development of an integrated seaweed-based aquaculture activity in Chile: determining the physiological capabilities of Macrocystis and Gracilaria as biofilters BT - Nineteenth International Seaweed Symposium: Proceed (M. A. Borowitzka, A. T. Critchley, S. Kraan, A. Peters, K. Sjøtun, & M. Notoya (eds.); pp. 121–127). Springer Netherlands. https://doi.org/10.1007/978-1-4020-9619-8_17
Buschmann, A., Troell, M., Kautsky, N., & Kautsky, L. (2004). Integrated tank cultivation of salmonids and Gracilaria chilensis (Gracilariales, Rhodophyta). Hydrobiologia, 326-327, 75-82. https://doi.org/10.1007/BF00047789
Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32(6), 831-849. https://doi.org/10.1016/j.envint.2006.05.002
Carmona, R., Kraemer, G. P., & Yarish, C. (2006). Exploring Northeast American and Asian species of Porphyra for use in an integrated finfish–algal aquaculture system. Aquaculture, 252(1), 54-65. https://doi.org/10.1016/j.aquaculture.2005.11.049
Chopin, T., Buschmann, A. H., Halling, C., Troell, M., Kautsky, N., Neori, A., ... & Neefus, C. (2001). Integrating seaweeds into marine aquaculture systems: A key toward sustainability. Journal of Phycology, 37(6), 975-986. https://doi.org/10.1046/j.1529-8817.2001.01137.x
Chung, I.-K., Kang, Y.-H., Yarish, C., George, P. K., & Lee, J.-A. (2002). Application of Seaweed Cultivation to the Bioremediation of Nutrient-Rich Effluent. In Algae (Vol. 17, Issue 3, pp. 187-194). https://doi.org/10.4490/algae.2002.17.3.187
Corey, P., Kim, J. K., Duston, J., & Garbary, D. J. (2014). Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system. Algae, 29(1), 35-45. https://doi.org/10.4490/algae.2014.29.1.035
de Raús Maúre, E., Terauchi, G., Ishizaka, J., Clinton, N., & DeWitt, M. (2021). Globally consistent assessment of coastal eutrophication. Nature Communications, 12(1), 1-9. https://doi.org/10.1038/s41467-021-26391-9
Du, R., Liu, L., Wang, A., & Wang, Y. (2013). Effects of temperature, algae biomass and ambient nutrient on the absorption of dissolved nitrogen and phosphate by Rhodophyte Gracilaria asiatica. Chinese Journal of Oceanology and Limnology, 31(2), 353-365. https://doi.org/10.1007/s00343-013-2114-2
Food and Agriculture Organization (FAO). (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. https://doi.org/10.4060/ca9229en
Fei, X. (2004). Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia, 512, 145-151. https://doi.org/10.1023/B:HYDR.0000020320.68331.ce
Felaco, L., Olvera-Novoa, M. A., & Robledo, D. (2020). Multitrophic integration of the tropical red seaweed Solieria filiformis with sea cucumbers and fish. Aquaculture, 527(March). https://doi.org/10.1016/j.aquaculture.2020.735475
Gao, G., Gao, L., Fu, Q., Li, X., & Xu, J. (2022). Coculture of the Pacific white shrimp Litopenaeus vannamei and the macroalga Ulva linza enhances their growth rates and functional properties. Journal of Cleaner Production, 349(February). https://doi.org/10.1016/j.jclepro.2022.131407
Gorman, L., Kraemer, G. P., Yarish, C., Boo, S. M., & Kim, J. K. (2017). The effects of temperature on the growth rate and nitrogen content of invasive Gracilaria vermiculophylla and native Gracilaria tikvahiae from Long Island Sound, USA. Algae, 32(1), 57-66. https://doi.org/10.4490/algae.2017.32.1.30
Guiry, M. D., & Guiry, G. M. (2011). World-wide electronic publication, National University of Ireland, Galway. AlgaeBase. https://www.algaebase.org
Guiry, M. D., & Guiry, G. M. (2012). World-wide electronic publication, National University of Ireland, Galway. AlgaeBase. https://www.algaebase.org
He, P., Xu, S., Zhang, H., Wen, S., Dai, Y., Lin, S., & Yarish, C. (2008). Bioremediation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, Porphyra yezoensis, cultivated in the open sea. Water Research, 42(4-5), 1281-1289. https://doi.org/10.1016/j.watres.2007.09.023
Henriques, B., Rocha, L. S., Lopes, C. B., Figueira, P., Duarte, A. C., Vale, C., ... & Pereira, E. (2017). A macroalgae-based biotechnology for water remediation: Simultaneous removal of Cd, Pb and Hg by living Ulva lactuca. Journal of Environmental Management, 191, 275-289. https://doi.org/10.1016/j.jenvman.2017.01.035
Hernández, I., Fernández-Engo, M. A., Pérez-Lloréns, J. L., & Vergara, J. J. (2005). Integrated outdoor culture of two estuarine macroalgae as biofilters for dissolved nutrients from Sparus aurata waste waters. Journal of Applied Phycology, 17(6), 557-567. https://doi.org/10.1007/s10811-005-9006-6
Holdt, S. L., & Edwards, M. D. (2014). Cost-effective IMTA: a comparison of the production efficiencies of mussels and seaweed. Journal of Applied Phycology, 26(2), 933-945. https://doi.org/10.1007/s10811-014-0273-y
Huo, Y., Wu, H., Chai, Z., Xu, S., Han, F., Dong, L., & He, P. (2012). Bioremediation efficiency of Gracilaria verrucosa for an integrated multi-trophic aquaculture system with Pseudosciaena crocea in Xiangshan harbor, China. Aquaculture, 326-329, 99-105. https://doi.org/10.1016/j.aquaculture.2011.11.002
Johnson, R. B., Kim, J. K., Armbruster, L. C., & Yarish, C. (2014). Nitrogen allocation of Gracilaria tikvahiae grown in urbanized estuaries of Long Island Sound and New York City, USA: A preliminary evaluation of ocean farmed Gracilaria for alternative fish feeds. Algae, 29(3), 227-235. https://doi.org/10.4490/algae.2014.29.3.227
Kambey, C. S. B., Sondak, C. F. A., & Chung, I. K. (2020). Potential growth and nutrient removal of Kappaphycus alvarezii in a fish floating-net cage system in Sekotong Bay, Lombok, Indonesia. Journal of the World Aquaculture Society, 51(4), 944-959. https://doi.org/10.1111/jwas.12683
Kang, Y. H., Hwang, J. R., Chung, I. K., & Park, S. R. (2013). Development of a seaweed species-selection index for successful culture in a seaweed-based integrated aquaculture system. Journal of Ocean University of China, 12(1), 125-133. https://doi.org/10.1007/s11802-013-1928-z
Kang, Y. H., Kim, S., Choi, S. K., Lee, H. J., Chung, I. K., & Park, S. R. (2021). A comparison of the bioremediation potential of five seaweed species in an integrated fish-seaweed aquaculture system: implication for a multi-species seaweed culture. Reviews in Aquaculture, 13(1), 353-364. https://doi.org/10.1111/raq.12478
Kang, Y. H., Park, S. R., & Chung, I. K. (2011). Biofiltration efficiency and biochemical composition of three seaweed species cultivated in a fish-seaweed integrated culture. Algae, 26(1), 97-108. https://doi.org/10.4490/algae.2011.26.1.097
Kang, Y. H., Park, S. R., Oak, J. H., Seo, T. H., Shin, J. A., & Chung, I. K. (2009). Physiological responses of Porphyra yezoensis ueda (Bangiales, Rhodophyta) exposed to high ammonium effluent in a seaweed-based integrated aquaculture system. Journal of Fisheries Science and Technology, 12(1), 70-77. https://doi.org/10.5657/fas.2009.12.1.070
Kang, Y. H., Shin, J. A., Kim, M. S., & Chung, I. K. (2008). A preliminary study of the bioremediation potential of Codium fragile applied to seaweed integrated multi-trophic aquaculture (IMTA) during the summer. Journal of Applied Phycology, 20(2), 183-190. https://doi.org/10.1007/s10811-007-9204-5
Kerrison, P. D. (2017). Algae as Crops Seaweed (B. Thomas, B. G. Murray, & D. J. B. T.-E. of A. P. S. (Second E. Murphy (eds.); pp. 148–152). Academic Press. https://doi.org/10.1016/B978-0-12-394807-6.00166-0
Khoi, L. V, & Fotedar, R. (2011). Integration of western king prawn (Penaeus latisulcatus Kishinouye, 1896) and green seaweed (Ulva lactuca Linnaeus, 1753) in a closed recirculating aquaculture system. Aquaculture, 322-323, 201-209. https://doi.org/10.1016/j.aquaculture.2011.09.030
Kim, J. K., Duston, J., Corey, P., & Garbary, D. J. (2013). Marine finfish effluent bioremediation: Effects of stocking density and temperature on nitrogen removal capacity of Chondrus crispus and Palmaria palmata (Rhodophyta). Aquaculture, 414-415, 210-216. https://doi.org/10.1016/j.aquaculture.2013.08.008
Kim, J. K., Kraemer, G. P., Neefus, C. D., Chung, I. K., & Yarish, C. (2007). Effects of temperature and ammonium on growth, pigment production and nitrogen uptake by four species of Porphyra (Bangiales, Rhodophyta) native to the New England coast. Journal of Applied Phycology, 19(5), 431. https://doi.org/10.1007/s10811-006-9150-7
Kim, J. K., Kraemer, G. P., & Yarish, C. (2014). Field scale evaluation of seaweed aquaculture as a nutrient bioextraction strategy in Long Island Sound and the Bronx River Estuary. Aquaculture, 433, 148-156. https://doi.org/10.1016/j.aquaculture.2014.05.034
Kim, J. K., Yarish, C., Hwang, E. K., Park, M., & Kim, Y. (2017). Seaweed aquaculture: Cultivation technologies, challenges and its ecosystem services. Algae, 32(1), 1-13. https://doi.org/10.4490/algae.2017.32.3.3
Kim, J. K., Yarish, C., & Pereira, R. (2016). Tolerances to hypo-osmotic and temperature stresses in native and invasive species of Gracilaria (Rhodophyta). Phycologia, 55(3), 257-264. https://doi.org/10.2216/15-90.1
Kotta, J., Raudsepp, U., Szava-Kovats, R., Aps, R., Armoskaite, A., Barda, I., ... & Barboza, F. R. (2022). Assessing the potential for sea-based macroalgae cultivation and its application for nutrient removal in the Baltic Sea. Science of the Total Environment, 839(May). https://doi.org/10.1016/j.scitotenv.2022.156230
Kuncoro, E. P., Soedarti, T., Putrato, T. W. C., & Istiqomah, N. A. (2017). Adsorption of cadmium from aqueous solution using algae waste based adsorbent. AIP Conference Proceedings, 1854(June). https://doi.org/10.1063/1.4985411
Lamprianidou, F., Telfer, T., & Ross, L. G. (2015). A model for optimization of the productivity and bioremediation efficiency of marine integrated multitrophic aquaculture. Estuarine, Coastal and Shelf Science, 164, 253-264. https://doi.org/10.1016/j.ecss.2015.07.045
Lavania-Baloo, Azman, S., Mohd Said, M. I., Ahmad, F., & Mohamad, M. (2014). Biofiltration potential of macroalgae for ammonium removal in outdoor tank shrimp wastewater recirculation system. Biomass and Bioenergy, 66, 103–109. https://doi.org/10.1016/j.biombioe.2014.02.031
Liu, D., Keesing, J. K., He, P., Wang, Z., Shi, Y., & Wang, Y. (2013). The world’s largest macroalgal bloom in the Yellow Sea, China: Formation and implications. Estuarine, Coastal and Shelf Science, 129, 2-10. https://doi.org/10.1016/j.ecss.2013.05.021
Lohroff, T. J., Gillette, P. R., Close, H. G., Benetti, D. D., & Stieglitz, J. D. (2021). Evaluating the potential bioextractive capacity of South Florida native macroalgae Agardhiella subulata for use in integrated multi-trophic aquaculture (IMTA). Aquaculture, 544, 737091. https://doi.org/10.1016/j.aquaculture.2021.737091
Luo, M. B., Liu, F., & Xu, Z. L. (2012). Growth and nutrient uptake capacity of two co-occurring species, Ulva prolifera and Ulva linza. Aquatic Botany, 100, 18-24. https://doi.org/10.1016/j.aquabot.2012.03.006
Makkar, H. P. S., Tran, G., Heuzé, V., Giger-Reverdin, S., Lessire, M., Lebas, F., & Ankers, P. (2016). Seaweeds for livestock diets: A review. Animal Feed Science and Technology, 212, 1-17. https://doi.org/10.1016/j.anifeedsci.2015.09.018
Mandal, S. K., Ajay, G., Monisha, N., Malarvizhi, J., Temkar, G., & Mantri, V. A. (2015). Differential response of varying temperature and salinity regimes on nutrient uptake of drifting fragments of Kappaphycus alvarezii: implication on survival and growth. Journal of Applied Phycology, 27(4), 1571-1581. https://doi.org/10.1007/s10811-014-0469-1
Mao, Y., Yang, H., Zhou, Y., Ye, N., & Fang, J. (2009). Potential of the seaweed Gracilaria lemaneiformis for integrated multi-trophic aquaculture with scallop Chlamys farreri in North China. Journal of Applied Phycology, 21(6), 649-656. https://doi.org/10.1007/s10811-008-9398-1
Marinho-Soriano, E., Azevedo, C. A. A., Trigueiro, T. G., Pereira, D. C., Carneiro, M. A. A., & Camara, M. R. (2011). Bioremediation of aquaculture wastewater using macroalgae and Artemia. International Biodeterioration & Biodegradation, 65(1), 253-257. https://doi.org/10.1016/j.ibiod.2010.10.001
Marinho-Soriano, E., Nunes, S. O., Carneiro, M. A. A., & Pereira, D. C. (2009). Nutrients’ removal from aquaculture wastewater using the macroalgae Gracilaria birdiae. Biomass and Bioenergy, 33(2), 327-331. https://doi.org/10.1016/j.biombioe.2008.07.002
Mawi, S., Krishnan, S., Din, M. F. M., Arumugam, N., & Chelliapan, S. (2020). Bioremediation potential of macroalgae Gracilaria edulis and Gracilaria changii co-cultured with shrimp wastewater in an outdoor water recirculation system. Environmental Technology and Innovation, 17, 100571. https://doi.org/10.1016/j.eti.2019.100571
McHugh, D. J. (2003). A guide to the seaweed industry. In FAO Fisheries Technical paper (p. 441).
Nagler, P. L., Glenn, E. P., Nelson, S. G., & Napolean, S. (2003). Effects of fertilization treatment and stocking density on the growth and production of the economic seaweed Gracilaria parvispora (Rhodophyta) in cage culture at Molokai, Hawaii. Aquaculture, 219(1-4), 379-391. https://doi.org/10.1016/S0044-8486(02)00529-X
Naskar, S., Biswas, G., Kumar, P., De, D., Das, S., Sawant, P. B., ... & Behera, P. (2023). The green seaweed, Enteromorpha intestinalis: An efficient inorganic extractive species for environmental remediation and improved performances of fed species in brackishwater integrated multi-trophic aquaculture (BIMTA) system. Aquaculture, 569(July 2022), 739359. https://doi.org/10.1016/j.aquaculture.2023.739359
Nelson, S. G., Glenn, E. P., Conn, J., Moore, D., Walsh, T., & Akutagawa, M. (2001). Cultivation of Gracilaria parvispora (Rhodophyta) in shrimp-farm effluent ditches and floating cages in Hawaii: A two-phase polyculture system. Aquaculture, 193(3-4), 239-248. https://doi.org/10.1016/S0044-8486(00)00491-9
Neori, A., Chopin, T., Troell, M., Buschmann, A. H., Kraemer, G. P., Halling, C., ... & Yarish, C. (2004). Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231(1), 361–391. https://doi.org/10.1016/j.aquaculture.2003.11.015
Niu, L., Zou, G., Guo, Y., Li, Y., Wang, C., Hu, Q., ... & Wang, L. (2022). Eutrophication dangers the ecological status of coastal wetlands: A quantitative assessment by composite microbial index of biotic integrity. The Science of the Total Environment, 816, 151620. https://doi.org/10.1016/j.scitotenv.2021.151620
Nobre, A. M., Robertson-Andersson, D., Neori, A., & Sankar, K. (2010). Ecological–economic assessment of aquaculture options: Comparison between abalone monoculture and integrated multi-trophic aquaculture of abalone and seaweeds. Aquaculture, 306(1), 116-126. https://doi.org/10.1016/j.aquaculture.2010.06.002
Ohtake, M., Natori, N., Sugai, Y., Tsuchiya, K., Aketo, T., Nishihara, G. N., & Toda, T. (2020). Growth and nutrient uptake characteristics of Sargassum macrocarpum cultivated with phosphorus-replete wastewater. Aquatic Botany, 163(January). https://doi.org/10.1016/j.aquabot.2020.103208
Park, M. S., Kim, J. K., Shin, S., Min, B. H., & Samanta, P. (2021). Trophic fractionation in an integrated multi-trophic aquaculture off Tongyoung Coast: A stable isotope approach. Aquaculture, 536(July 2020), 1-6. https://doi.org/10.1016/j.aquaculture.2021.736454
Pedersen, A., Kraemer, G., & Yarish, C. (2004). The effects of temperature and nutrient concentrations on nitrate and phosphate uptake in different species of Porphyra from Long Island Sound (USA). Journal of Experimental Marine Biology and Ecology, 312(2), 235-252. https://doi.org/10.1016/j.jembe.2004.05.021
Phillips, J. C., & Hurd, C. L. (2004). Kinetics of nitrate, ammonium, and urea uptake by four intertidal seaweeds from New Zealand. Journal of Phycology, 40(3), 534-545. https://doi.org/10.1111/j.1529-8817.2004.03157.x
Pratiwi, D., Prasetyo, D. J., & Poeloengasih, C. D. (2019). Adsorption of Methylene Blue dye using Marine algae Ulva lactuca. IOP Conference Series: Earth and Environmental Science, 251(1). https://doi.org/10.1088/1755-1315/251/1/012012
Pritchard, D. W., Hurd, C. L., Beardall, J., & Hepburn, C. D. (2015). Restricted use of nitrate and a strong preference for ammonium reflects the nitrogen ecophysiology of a light-limited red alga. Journal of Phycology, 51(2), 277-287. https://doi.org/10.1111/jpy.12272
Putri, L. S. E., & Syafiqa, E. (2019). The Adsorption of Heavy Metals From Industrial Wastewater Using Sargassum Crassifolium. International Journal of GEOMATE, 17(59), 21-27. https://doi.org/10.21660/2019.59.4603
Rathod, M., Mody, K., & Basha, S. (2014). Efficient removal of phosphate from aqueous solutions by red seaweed, Kappaphycus alverezii. Journal of Cleaner Production, 84(1), 484-493. https://doi.org/10.1016/j.jclepro.2014.03.064
Reid, G. K., Chopin, T., Robinson, S. M. C., Azevedo, P., Quinton, M., & Belyea, E. (2013). Weight ratios of the kelps, Alaria esculenta and Saccharina latissima, required to sequester dissolved inorganic nutrients and supply oxygen for Atlantic salmon, Salmo salar, in Integrated Multi-Trophic Aquaculture systems. Aquaculture, 408-409, 34-46. https://doi.org/10.1016/j.aquaculture.2013.05.004
Rodrigueza, M. R. C., & Montaño, M. N. E. (2007). Bioremediation potential of three carrageenophytes cultivated in tanks with seawater from fish farms. Journal of Applied Phycology, 19(6), 755-762. https://doi.org/10.1007/s10811-007-9217-0
Roleda, M. Y., & Hurd, C. L. (2019). Seaweed nutrient physiology: application of concepts to aquaculture and bioremediation. Phycologia, 58(5), 552-562. https://doi.org/10.1080/00318884.2019.1622920
Ryder, E., Nelson, S. G., McKeon, C., Glenn, E. P., Fitzsimmons, K., & Napolean, S. (2004). Effect of water motion on the cultivation of the economic seaweed Gracilaria parvispora (Rhodophyta) on Molokai, Hawaii. Aquaculture, 238(1-4), 207-219. https://doi.org/10.1016/j.aquaculture.2004.05.019
Saldarriaga-Hernandez, S., Hernandez-Vargas, G., Iqbal, H. M. N., Barceló, D., & Parra-Saldívar, R. (2020). Bioremediation potential of Sargassum sp. biomass to tackle pollution in coastal ecosystems: Circular economy approach. Science of the Total Environment, 715. https://doi.org/10.1016/j.scitotenv.2020.136978
Samocha, T. M., Fricker, J., Ali, A. M., Shpigel, M., & Neori, A. (2015). Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an Integrated Multi-Trophic Aquaculture (IMTA) system. Aquaculture, 446, 263–271. https://doi.org/10.1016/j.aquaculture.2015.05.008
Sanderson, J. C., Dring, M. J., Davidson, K., & Kelly, M. S. (2012). Culture, yield and bioremediation potential of Palmaria palmata (Linnaeus) Weber & Mohr and Saccharina latissima (Linnaeus) C.E. Lane, C. Mayes, Druehl & G.W. Saunders adjacent to fish farm cages in northwest Scotland. Aquaculture, 354-355, 128-135. https://doi.org/10.1016/j.aquaculture.2012.03.019
Scherner, F., Bonomi Barufi, J., & Horta, P. A. (2012). Photosynthetic response of two seaweed species along an urban pollution gradient: evidence of selection of pollution-tolerant species. Marine Pollution Bulletin, 64(11), 2380-2390. https://doi.org/10.1016/j.marpolbul.2012.08.012
Sfriso, A., & Facca, C. (2013). Annual growth and environmental relationships of the invasive species Sargassum muticum and Undaria pinnatifida in the lagoon of Venice. Estuarine, Coastal and Shelf Science, 129, 162-172. https://doi.org/10.1016/j.ecss.2013.05.031
Shahar, B., Shpigel, M., Barkan, R., Masasa, M., Neori, A., Chernov, H., ... & Guttman, L. (2020). Changes in metabolism, growth and nutrient uptake of Ulva fasciata (Chlorophyta) in response to nitrogen source. Algal Research, 46(December 2019). https://doi.org/10.1016/j.algal.2019.101781
Skriptsova, A. V, & Miroshnikova, N. V. (2011). Laboratory experiment to determine the potential of two macroalgae from the Russian Far-East as biofilters for integrated multi-trophic aquaculture (IMTA). Bioresource Technology, 102(3), 31493154. https://doi.org/10.1016/j.biortech.2010.10.093
Smith, V. H., & Schindler, D. W. (2009). Eutrophication science: where do we go from here?. Trends in Ecology & Evolution, 24(4), 201-207. https://doi.org/10.1016/j.tree.2008.11.009
Sode, S., Bruhn, A., Balsby, T. J. S., Larsen, M. M., Gotfredsen, A., & Rasmussen, M. B. (2013). Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta). Bioresource Technology, 146, 426-435. https://doi.org/10.1016/j.biortech.2013.06.062
Sun, K. M., Li, R., Li, Y., Xin, M., Xiao, J., Wang, Z., ... & Pang, M. (2015). Responses of Ulva prolifera to short-term nutrient enrichment under light and dark conditions. Estuarine, Coastal and Shelf Science, 163, 56-62. https://doi.org/10.1016/j.ecss.2015.03.018
Supriyantini, E., Soenardjo, N., Santosa, G. W., Ridlo, A., Sedjati, S., & Ambariyanto, A. (2018). Effectiveness and efficiency of the red seaweed Gracilaria verrucosa as biofilter in Pb absorption in seawater. AACL Bioflux, 11(3), 877-883. https://www.cabdirect.org/cabdirect/abstract/20183236753
Tanaka, Y., Ashaari, A., Mohamad, F. S., & Lamit, N. (2020). Bioremediation potential of tropical seaweeds in aquaculture: low-salinity tolerance, phosphorus content, and production of UV-absorbing compounds. Aquaculture, 518(December 2019), 1-5. https://doi.org/10.1016/j.aquaculture.2019.734853
Tang, Y. Z., & Gobler, C. J. (2011). The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae, 10(5), 480-488. https://doi.org/10.1016/j.hal.2011.03.003
Tian, S., Chen, B., Wu, M., Cao, C., Gu, Z., Zheng, T., ... & Ma, Z. (2023). Are there environmental benefits derived from coastal aquaculture of Sargassum fusiforme?. Aquaculture, 563(March 2022). https://doi.org/10.1016/j.aquaculture.2022.738909
Tremblay-Gratton, A., Boussin, J. C., Tamigneaux, Vandenberg, G. W., & Le François, N. R. (2018). Bioremediation efficiency of Palmaria palmata and Ulva lactuca for use in a fully recirculated cold-seawater naturalistic exhibit: effect of high NO3 and PO4 concentrations and temperature on growth and nutrient uptake. Journal of Applied Phycology, 30(2), 1295-1304. https://doi.org/10.1007/s10811-017-1333-x
Troell, M., Halling, C., Nilsson, A., Buschmann, A. H., Kautsky, N., & Kautsky, L. (1997). Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output. Aquaculture, 156(1), 45-61. https://doi.org/10.1016/S0044-8486(97)00080-X
Tsai, C. C., Chang, J. S., Sheu, F., Shyu, Y. T., Yu, A. Y. C., Wong, S. L., ... & Lee, T. M. (2005). Seasonal growth dynamics of Laurencia papillosa and Gracilaria coronopifolia from a highly eutrophic reef in southern Taiwan: Temperature limitation and nutrient availability. Journal of Experimental Marine Biology and Ecology, 315(1), 49-69. https://doi.org/10.1016/j.jembe.2004.08.025
Vigouroux, G., Kari, E., Beltrán-Abaunza, J. M., Uotila, P., Yuan, D., & Destouni, G. (2021). Trend correlations for coastal eutrophication and its main local and whole-sea drivers – Application to the Baltic Sea. Science of the Total Environment, 779. https://doi.org/10.1016/j.scitotenv.2021.146367
Wei, Z., Huo, Y., Liu, Q., Yang, F., Long, L., Bi, H., ... & He, P. (2019). A field scale evaluation of Gracilaria lemaneiformis co-cultured with Crassostrea gigas as a nutrient bioextraction strategy in Yantian Bay, China. Algal Research, 38(January). https://doi.org/10.1016/j.algal.2019.101407
Wei, Z., You, J., Wu, H., Yang, F., Long, L., Liu, Q., ... & He, P. (2017). Bioremediation using Gracilaria lemaneiformis to manage the nitrogen and phosphorous balance in an integrated multi-trophic aquaculture system in Yantian Bay, China. Marine Pollution Bulletin, 121(1-2), 313-319. https://doi.org/10.1016/j.marpolbul.2017.04.034
Wu, H., Huo, Y., Han, F., Liu, Y., & He, P. (2015a). Bioremediation using Gracilaria chouae co-cultured with Sparus macrocephalus to manage the nitrogen and phosphorous balance in an IMTA system in Xiangshan Bay, China. Marine Pollution Bulletin, 91, 272-279. https://doi.org/10.1016/j.marpolbul.2017.04.034
Wu, H., Huo, Y., Hu, M., Wei, Z., & He, P. (2015b). Eutrophication assessment and bioremediation strategy using seaweeds co-cultured with aquatic animals in an enclosed bay in China. Marine Pollution Bulletin, 95(1), 342-349. https://doi.org/10.1016/j.marpolbul.2015.03.016
Wu, H., Huo, Y., Zhang, J., Liu, Y., Zhao, Y., & He, P. (2015c). Bioremediation efficiency of the largest scale artificial Porphyra yezoensis cultivation in the open sea in China. Marine Pollution Bulletin, 95(1), 289-296. https://doi.org/10.1016/j.marpolbul.2015.03.028
Wu, H., Kim, J. K., Huo, Y., Zhang, J., & He, P. (2017). Nutrient removal ability of seaweeds on Pyropia yezoensis aquaculture rafts in China’s radial sandbanks. Aquatic Botany, 137, 72-79. https://doi.org/10.1016/j.aquabot.2016.11.011
Xiao, X., Agusti, S., Lin, F., Li, K., Pan, Y., Yu, Y., ... & Duarte, C. M. (2017). Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture. Scientific Reports, 7(April), 1-6. https://doi.org/10.1038/srep46613
Xu, D., Gao, Z., Zhang, X., Qi, Z., Meng, C., Zhuang, Z., & Ye, N. (2011). Evaluation of the potential role of the macroalga Laminaria japonica for alleviating coastal eutrophication. Bioresource Technology, 102(21), 9912-9918. https://doi.org/10.1016/j.biortech.2011.08.035
Yang, Y.-F., Fei, X.-G., Song, J.-M., Hu, H.-Y., Wang, G.-C., & Chung, I. K. (2006). Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters. Aquaculture, 254(1), 248-255. https://doi.org/10.1016/j.aquaculture.2005.08.029
Yu, J., & Yang, Y. F. (2008). Physiological and biochemical response of seaweed Gracilaria lemaneiformis to concentration changes of N and P. Journal of Experimental Marine Biology and Ecology, 367(2), 142-148. https://doi.org/10.1016/j.jembe.2008.09.009
Yu, Z., Hu, C., Sun, H., Li, H., & Peng, P. (2013). Pond culture of seaweed Sargassum hemiphyllum in southern China. Chinese Journal of Oceanology and Limnology, 31(2), 300-305. https://doi.org/10.1007/s00343-013-2120-4
Yu, Z., Robinson, S. M. C., Xia, J., Sun, H., & Hu, C. (2016). Growth, bioaccumulation and fodder potentials of the seaweed Sargassum hemiphyllum grown in oyster and fish farms of South China. Aquaculture, 464, 459-468. https://doi.org/10.1016/j.aquaculture.2016.07.031
Yu, Z., Sun, H., Huang, W., Hu, C., & Zhou, Y. (2019). Sargassum henslowianum as a potential biofilter in mariculture farms of a subtropical eutrophic bay. Marine Pollution Bulletin, 149(October). https://doi.org/10.1016/j.marpolbul.2019.110615
Yu, Z., Zhu, X., Jiang, Y., Luo, P., & Hu, C. (2014). Bioremediation and fodder potentials of two Sargassum spp. in coastal waters of Shenzhen, South China. Marine Pollution Bulletin, 85(2), 797-802. https://doi.org/10.1016/j.marpolbul.2013.11.018
Zhou, Y., Yang, H., Hu, H., Liu, Y., Mao, Y., Zhou, H., ... & Zhang, F. (2006). Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China. Aquaculture, 252(2-4), 264-276. https://doi.org/10.1016/j.aquaculture.2005.06.046
Zhu, Z.-Y., Zhang, J., Wu, Y., Zhang, Y.-Y., Lin, J., & Liu, S.-M. (2011). Hypoxia off the Changjiang (Yangtze River) Estuary: Oxygen depletion and organic matter decomposition. Marine Chemistry, 125(1), 108-116. https://doi.org/10.1016/j.marchem.2011.03.005
Recommended Citation
Meirinawati, Hanny and Wahyudi, A’an Johan
(2023).
SEAWEED AS BIOADSORBENT FOR NITROGEN AND PHOSPHORUS REMOVAL.
Journal of Environmental Science and Sustainable Development, 6(1), 183-209.
Available at: https://doi.org/10.7454/jessd.v6i1.1159