•  
  •  
 

Author ORCID Identifier

https://orcid.org/0000-0002-4167-4277

Article Classification

Sustainable Development

Abstract

Plastic has been an essential part of our daily life. However, the increasing plastic consumption has led to an increasing land and water contamination by said plastics. The Indonesian government has set five actions on managing marine plastic debris, one of them is by improving the plastic recycling system. Multilayer plastic was identified as a challenge to the plastic waste recycling. This is because there are differences in properties, such as melting point, which will cause difficulty in mechanical recycling. This study aims to create a mapping of available options to solve problems of low value plastic (LVP) waste in Indonesia and to assess the readiness level of key aspects in implementing the available options. Interviews was done with twelve experts on the field of material or energy recovery from plastic waste, especially LVP, to find the available technology options which include but not limited to their primary features, readiness status and feasibility, and potential market size. The evaluation was based on a set of criteria in technology, environment, social, and economy viewpoints. Three top low hanging options are conversion to plastic lumber, refuse derived fuel (RDF) production, and conversion to plastic products. All the three processes have mature technology and local availability. The challenges include a good branding and marketing strategy to expand market, endorsement, and recognition from government, including recycle content standard and more cost-effective collection. Further investigation has to be done for RDF utilization in industrial boilers. More promotion and introduction of recycled products have to be performed in order to create market to allow a sustainable recycling industry.

References

Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., & Antonakou, Ε. V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149(3), 536-542. https://doi.org/10.1016/j.jhazmat.2007.06.076

Agyeman, S., Obeng-Ahenkora, N. K., Assiamah, S., & Twumasi, G. (2019). Exploiting recycled plastic waste as an alternative binder for paving blocks production. Case Studies in Construction Materials,. 11, Article e00246. https://doi.org/10.1016/j.cscm.2019.e00246

Alajarmeh, R., Allouzi, R., & Alkloub, A. (2018). Plastic Waste Utilization as Asphalt Binder Modifier in Asphalt Concrete Pavement. International Journal of Civil and Environmental Engineering, 12(5), 566-571. https://doi.org/10.5281/zenodo.1317348

Ali, S. S., Elsamahy, T., Koutra, E., Kornaros, M, El-Sheekh, M., Abdelkarim, E. A., Zhu, D., Sun, J. (2021). Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Sci. Total Environ., 771, Article 144719. https://doi.org/10.1016/j.scitotenv.2020.144719

Anukiruthika, T., Sethupathy, P., Wilson, A., Kashampur, K., Moses, J. A., &Anandharamakrishnan, C. (2020). Multilayer packaging: Advances in preparation techniques and emerging food applications. Comprehensive Reviews in Food Science and Food Safety,. 19(3): 1156-1186. https://doi.org/10.1111/1541-4337.12556

Awoyera, P. O. & Adesina, A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12, Article e00330. https://doi.org/10.1016/j.cscm.2020.e00330

Chen, X., Wang, Y., & Zhang, L. (2021). Recent Progress in the Chemical Upcycling of Plastic Wastes. ChemSusChem, 14(19), 4137-4151. https://doi.org/10.1002/cssc.202100868

Coordinating Ministry for Maritime Affairs. (2017). Executive Summary: Indonesia’s Plan of Action on Marine Plastic Debris 2017-2025, 1-5.

Cowie, J. M. G. & Arrighi, V. (2008). Polymers: Chemistry and Physics of Modern Materials. CRC Press, Taylor & Francis Group.

Dahlbo, H., Poliakova, V., Mylläri, V., Sahimaa, O., & Anderson, R. (2018).Recycling potential of post-consumer plastic packaging waste in Finland. Waste Manag., 71: 52-61. https://doi.org/10.1016/j.wasman.2017.10.033

Darus, N., Tamimi, M., Tirawaty, S., Muchtazar, M., Trisyanti, D., Akib, R., ... & Ranggi, K. (2019). An Overview of Plastic Waste Recycling in the Urban Area of Java Island in Indonesia. Journal of Environmental Science and Sustainable Development, 3(2), 402-415. https://doi.org/10.7454/jessd.v3i2.1073

Edge-Environment. (2017). Pallet Life Cycle Assessment and Benchmark. Manly, Australia. https://re-pal.com/wp-content/uploads/2019/03/Edge-Environment-Pallet-Life-CycleAssessment-and-Benchmark-Report.pdf

GA Circular. (2017). Toward circularity of post-consumer flexible packaging in Asia: Exploring collection and recycling solutions.

Grigore, M. E. (2017). Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling, 2(4), 24. https://doi.org/10.1016/j.scitotenv.2018.02.330

Hahladakis, J. N., & Iacovidou, E. (2018). Closing the loop on plastic packaging materials: What is quality and how does it affect their circularity?. Science of the Total Environment, 630, 1394-1400. https://doi.org/10.1016/j.scitotenv.2018.02.330

Halim, C., van Toulon, N., Tandiyo, W., & Wibawa, H. (2018). Plastic Recycling & Recyclability: Indonesian recycling sector perspective. ADUPI, Indonesian Waste Platform, Indonesian Packaging Federation.

Hopewell, J., Dvorak, R., & Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2115-2126. https://doi.org/10.1098/rstb.2008.0311

Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., ... & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771. https://doi.org/10.1126/science.1260352

Jubinville, D., Esmizadeh, E., Saikrishnan, S., Tzoganakis, C., & Mekonnen, T. (2020). A comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications. Sustainable materials and technologies, 25, e00188. https://doi.org/10.1016/j.susmat.2020.e00188

Kaiser, K., Schmid M., & Schlummer, M (2018). Recycling of Polymer-Based Multilayer Packaging: A Review. Recycling, 3(1), 1. http://dx.doi.org/10.3390/recycling3010001

Kareba, A. M., Khaerunnisa, K., & Harmilawati, H. (2020). Inovasi Rebricks Indonesia dalam Pengolahan Mikroplastik Multilayer di Pondok Pinang, Kebayoran Lama, Jakarta Selatan. Prosiding UMY Grace, 1(2), 122-131.

Kementerian Lingkungan Hidup dan Kehutanan. (2021). Kajian Daur Ulang Plastik dan Kertas Dalam Negeri.

Koltzenburg., S., Maskos., M., & Nuyken, O (2017). Polymer Chemistry. Springer-Verlag.

Kusch, A., Gasde, J., Deregowski, C., Woidasky, J., Lang-Koetz, C., & Viere, T. (2021). Sorting and Recycling of Lightweight Packaging in Germany — Climate Impacts and Options for Increasing Circularity Using Tracer-Based-Sorting. Materials Circular Economy, 3(1). https://doi.org/10.1007/s42824-021-00022-6

Lahtela, V., Silwal, S., & Kärki, T. (2020). Re-Processing of Multilayer Plastic Materials as a Part of the Recycling Process: The Features of Processed Multilayer Materials. Polymers, 12(11), 2517. http://dx.doi.org/10.3390/polym12112517

Manalu, G., & Maruf, M. F. (2020). Kerjasama Pemerintah Kota Surabaya dan PT. Sumber Organik Pada Program Pembangkit Listrik Berbasis Sampah Di TPA Benowo Kota Surabaya. Publika, 8(2). https://jurnalmahasiswa.unesa.ac.id/index.php/27/article/view/33385

Mashaan, N. S., Rezagholilou, A., & Nikraz, H. (2019, August). Waste Plastic as Additive in Asphalt Pavement Reinforcement: A review. In AAPA International Flexible Pavements Conference, 18th. https://trid.trb.org/view/1655075

Meys, R., Frick, F., Westhues, S., Sternberg, A., Klankernayer, J., Bardow, A. (2020). Towards a circular economy for plastic packaging wastes – the environmental potential of chemical recycling. Resources, Conservation and Recycling, 162, 105010. https://doi.org/10.1016/j.resconrec.2020.105010

Miandad, R., Rehan, M., Barakat, M. A., Aburiazaiza, A. S., Khan, H., Ismail, I. M., ... & Nizami, A. S. (2019). Catalytic pyrolysis of plastic waste: Moving toward pyrolysis based biorefineries. Frontiers in Energy Research, 7(MAR), 1-17. https://doi.org/10.3389/fenrg.2019.00027

Ministry of Environment and Forestry (2020). National Plastic Waste Reduction Strategic Actions for Indonesia. Republic of Indonesia.

Miskolczi, N., Angyal, A., Prof. Bartha, L., & Valkai, I. (2009). Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Processing Technology, 90(7), 1032-1040. http://dx.doi.org/10.1016/j.fuproc.2009.04.019

Morales Ibarra, R. (2014). Carbon Fiber Recovery using Subcritical and Supercritical Fluids for Chemical Recycling of Thermoset Composite Materials (Doctoral Thesis, University of Nueve León).

Morris, B. A. (2022). The science and technology of flexible packaging: multilayer films from resin and process to end use. William Andrew.

Mulakkal, M. C., Castillo, A. C., Taylor, A. C., Blackman, B. R., Balint, D. S., Pimenta, S., & Charalambides, M. N. (2021). Advancing mechanical recycling of multilayer plastics through finite element modelling and environmental policy. Resources, Conservation and Recycling, 166, 105371.https://doi.org/10.1016/j.resconrec.2020.105371

Najafi, S. K. (2013). Use of recycled plastics in wood plastic composites - a review. Waste Manag., 33(9): 1898-905. https://doi.org/10.1016/j.wasman.2013.05.017

Nurhati, I. S. & Cordova, M. R. (2020). Marine plastic debris in Indonesia: Baseline estimates (2010-2019) and monitoring strategy (2021-2025). Marine Research in Indonesia, 45(2), 97-102. https://doi.org/10.14203/mri.v45i2.581

Ocean Conservancy (2015). Stemming the Tide: Land-based strategies for a plastic-free ocean.

Odian, G. (2004). Principles of Polymerization. John Wiley & Sons.

Pauer, E., Tracker, M., Gabriel, V., & Krauter, V. (2020). Sustainability of flexible multilayer packaging: Environmental impacts and recyclability of packaging for bacon in block. Cleaner Environmental Systems, 1, 100001. https://doi.org/10.1016/j.cesys.2020.100001

Plastics Europe. (2020). Plastics-the Facts 2020: An analysis of European plastics production, demand and waste data.

Purwanta, W., Augustine, T., Octivia, R., Fani, A. M., & Rifai, A. (2022, April). Study of circular economy potential in the Bantargebang waste-to-energy plant. In IOP Conference Series: Earth and Environmental Science (Vol. 1017, No. 1, p. 012031). IOP Publishing. https://iopscience.iop.org/article/10.1088/1755-1315/1017/1/012031/meta

Rachman, S. A., Hamdi, M., Djaenuri, A., & Sartika, I. (2020). Model of Public Policy Implementation for Refused Derived Fuel (RDF) Waste Management in Cilacap Regency. International Journal of Science and Society, 2(4), 566-574. https://doi.org/10.54783/ijsoc.v2i4.239

Rahimi, A. & García, J. M. (2017). Chemical recycling of waste plastics for new materials production. Nature Reviews Chemistry, 1. https://doi.org/10.1038/s41570-017-0046

Samorì, C., Cespi, D., Blair, P., Galletti, P., Malferrari, D., Passarini, F., ... & Tagliavini, E. (2017). Application of switchable hydrophilicity solvents for recycling multilayer packaging materials. Green Chemistry, 19(7), 1714-1720. https://doi.org/10.1039/C6GC03535C

Schyns, Z. O. G., & Shaver, M. P. (2021). Mechanical Recycling of Packaging Plastics: A Review. Macromolecular Rapid Communications, 42(3), 1-27. https://doi.org/10.1002/marc.202000415

Singh, B. & Sharma, N. (2008). Mechanistic implications of plastic degradation. Polymer Degradation and Stability, 93(3): 561-584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008

Soares, C. T. de M., Ek, M., Östmark, E., Gällstedt, M., & Karlsson, S. (2022). Recycling of multi-material multilayer plastic packaging: Current trends and future scenarios. Resources, Conservation and Recycling, 176(September 2021). https://doi.org/10.1016/j.resconrec.2021.105905

Tartakowski, Z. (2010). Recycling of packaging multilayer films: New materials for technical products. Resources, Conservation and Recycling, 55(2), 167-170. https://doi.org/10.1016/j.resconrec.2010.09.004

Uvarajan, T., Gani, P., Chuan, N. C., & Zulkernain, N. H. (2021). Reusing plastic waste in the production of bricks and paving blocks: a review. European Journal of Environmental and Civil Engineering, 0(0), 1-34. https://doi.org/10.1080/19648189.2021.1967201

Unilever Indonesia. (2021). 2020 Unilever Indonesia Sustainability Report: Purpose-led, Future-fit. https://www.unilever.co.id/files/92ui5egz/production/bafbadd48715daa10c465efb9021a3c39205bd9e.pdf

Vera, P., Canellas, E., & Nerín, C. (2020). Compounds responsible for off-odors in several samples composed by polypropylene, polyethylene, paper and cardboard used as food packaging materials. Food Chem., 309, 125792. http://dx.doi.org/10.1016/j.foodchem.2019.125792

World Economic Forum (2020). Radically reducing plastic pollution in Indonesia: A Multistakeholder Action Plan; National Plastic Action Partnership.

Wu, S. & Montalvo, L. (2021). Repurposing waste plastics into cleaner asphalt pavement materials: A critical literature review. Journal of Cleaner Production, 280, 124355. https://doi.org/10.1016/j.jclepro.2020.124355

Yildirir, E. (2015). Chemical Recycling of Waste Plastics via Hydrothermal Processing (Doctoral dissertation, University of Leeds). https://etheses.whiterose.ac.uk/10704/

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.