Author ORCID Identifier


Article Classification

Environmental Science


Boron is a vital trace element required by plants, humans, and animals. It is also a significant element used in several industries. Along with the widespread usage of boron, boron waste progressively contaminates the potable water sources as well as causing a chain of environmental and health challenges to occur. This study reviews the techniques used for boron removal from aqueous solutions, including ion exchange, resin adsorption, reverse osmosis (RO), electrocoagulation, microfiltration, chemical coagulation, solvent extraction, electro dialytic, and hybrid processes. A review search was carried out from the databases Scopus, PubMed, Web of Knowledge, and Embase using the following key words: “Boron removal”, “saline water”, “wastewater”, “desalination, “membrane”, “adsorption”, “seawater” “hybrid process”, and “groundwater. Boron could be effectively eliminated using membrane treatments, such as RO, electrodialysis and microfiltration with elimination efficiency of 79-99.6%. Based on the findings of this study, the highest and lowest removal efficiency of boron using RO and resin techniques was 5.1-87% and 99.6%, respectively. The RO process is an appropriate technique for seawater desalination along with boron. Adsorption methods are only effective for aqueous solutions with low boron levels and mineral levels when the objective is to avoid repeated regeneration operations limitation. The highest concentration of boron in waters was found to be 25-100 mg/L in Poland, and the lowest concentration of 0.10-1.99 mg/L was found in Pakistan. These processes can be applied to future work to eliminate boron from saline water and wastewater in both experimental and real-world settings.


Abba, M. U., Che Man, H., Azis, S., Idris, A. I., Hazwan Hamzah, M., & Abdulsalam, M. (2021). Synthesis of Nano-Magnetite from Industrial Mill Chips for the Application of Boron Removal: Characterization and Adsorption Efficacy. International journal of environmental research and public health, 18(4), 1400. https://doi.org/10.3390/ijerph18041400

Agashichev, S., & Osman, E. (2016). Low pressure RO for boron elimination: impact of pH on the degree of rejection of boron and monovalent ions. Desalination and Water Treatment, 57(10), 4701-4707. https://doi.org/10.1080/19443994.2014.995138

Ahmadi, D., Khodabakhshi, A., Hemati, S., & Fadaei, A. (2020). Removal of diazinon pesticide from aqueous solutions by chemical–thermal-activated watermelon rind. International Journal of Environmental Health Engineering, 9(1), 18. https://www.ijehe.org/text.asp?2020/9/1/18/305827

Aksoy, N., Şimşek, C., & Gunduz, O. (2009). Groundwater contamination mechanism in a geothermal field: a case study of Balcova, Turkey. Journal of Contaminant Hydrology, 103(1-2), 13-28. https://doi.org/10.1016/j.jconhyd.2008.08.006

Al-Afya, N., & Sereshtia, H. (2019). Rapid removal of boron from environmental water samples using magnetic graphene oxide: optimized by central composite design. Desalin. Water Treat, 153, 65-75. https://www.deswater.com/DWT_abstracts/vol_153/153_2019_65.pdf

Al-Ithari, A. J., Sathasivan, A., Ahmed, R., Vuthaluru, H. B., Zhan, W., & Ahmed, M. (2011). Superiority of date seed ash as an adsorbent over other ashes and ferric chloride in removing boron from seawater. Desalination and Water Treatment, 32(1-3), 324-328. https://www.tandfonline.com/doi/abs/10.5004/dwt.2011.2717

Alharati, A., Swesi, Y., Fiaty, K., & Charcosset, C. (2017). Boron removal in water using a hybrid membrane process of ion exchange resin and microfiltration without continuous resin addition. Journal of water process engineering, 17, 32-39. https://doi.org/10.1016/j.jwpe.2017.03.002

Ali, Z., Al Sunbul, Y., Pacheco, F., Ogieglo, W., Wang, Y., Genduso, G., & Pinnau, I. (2019). Defect-free highly selective polyamide thin-film composite membranes for desalination and boron removal. Journal of Membrane Science, 578, 85-94. https://doi.org/10.1016/j.memsci.2019.02.032

Allende, K. L., McCarthy, D. T., & Fletcher, T. D. (2014). The influence of media type on removal of arsenic, iron and boron from acidic wastewater in horizontal flow wetland microcosms planted with Phragmites australis. Chemical Engineering Journal, 246, 217-228. https://doi.org/10.1016/j.cej.2014.02.035

Babiker, E., Al-Ghouti, M. A., Zouari, N., & McKay, G. (2019). Removal of boron from water using adsorbents derived from waste tire rubber. Journal of Environmental Chemical Engineering, 7(2), 102948. https://doi.org/10.1016/j.jece.2019.102948

Bai, C., Guo, M., Liu, Z., Wu, Z., & Li, Q. (2018). A novel method for removal of boron from aqueous solution using sodium dodecyl benzene sulfonate and d-mannitol as the collector. Desalination, 431, 47-55. https://doi.org/10.1016/j.desal.2017.12.028

Baldivia, S., Ibarra, R., Torre, R., Sobrino, G., Tasistro, A., Etchevers-Barra, J., & Reyna-Santamaría, L. (2016). Five causes why boron essentiality on humans has not been confirmed: a hypothesis. Integr Food Nutr Metab, 4, 1-5.

Balidakis, A., & Matsi, T. (2020). Boron Adsorption-Desorption by Steelmaking Slag for Boron Removal from Irrigation Waters. Water, Air, & Soil Pollution, 231(8), 1-11. https://doi.org/10.1007/s11270-020-04779-5

Ban, S.-H., Im, S.-J., Cho, J., & Jang, A. (2019). Comparative performance of FO-RO hybrid and two-pass SWRO desalination processes: Boron removal. Desalination, 471, 114114. https://doi.org/10.1016/j.desal.2019.114114

Bunani, S., Arda, M., Kabay, N., Yoshizuka, K., & Nishihama, S. (2017). Effect of process conditions on recovery of lithium and boron from water using bipolar membrane electrodialysis (BMED). Desalination, 416, 10-15. https://doi.org/10.1016/j.desal.2017.04.017

Cao, J., Monroe, S., & Hendry, D. (2015, September). Environmentally preferred process for efficient boron and hardness removal for produced water reuse. In SPE Annual Technical Conference and Exhibition. OnePetro. https://doi.org/10.2118/174796-MS

Chang, H.-M., Chen, S.-S., Cai, Z.-S., Chang, W.-S., Ray, S. S., Nguyen, N. C., . . . Paswan, M. (2020). Iodide recovery and boron removal from thin-film transistor liquid crystal display wastewater through forward osmosis. Journal of Cleaner Production, 258, 120587. https://doi.org/10.1016/j.jclepro.2020.120587

Chen, F., Guo, L., Zhang, X., Leong, Z. Y., Yang, S., & Yang, H. Y. (2017). Nitrogen-doped graphene oxide for effectively removing boron ions from seawater. Nanoscale, 9(1), 326-333. https://doi.org/10.1039/C6NR07448K

Chen, M., Dollar, O., Shafer-Peltier, K., Randtke, S., Waseem, S., & Peltier, E. (2020). Boron removal by electrocoagulation: Removal mechanism, adsorption models and factors influencing removal. Water research, 170, 115362. https://doi.org/10.1016/j.watres.2019.115362

Chen, T., Wang, Q., Lyu, J., Bai, P., & Guo, X. (2020). Boron removal and reclamation by magnetic magnetite (Fe3O4) nanoparticle: An adsorption and isotopic separation study. Separation and Purification Technology, 231, 115930. https://doi.org/10.1016/j.seppur.2019.115930

Chieng, H. J., & Chong, M. F. (2013). Boron adsorption on palm oil mill boiler (POMB) ash impregnated with chemical compounds. Industrial & Engineering Chemistry Research, 52(41), 14658-14670. https://doi.org/10.1021/ie401215n

Chorghe, D., Sari, M. A., & Chellam, S. (2017). Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: mechanisms and limitations. Water research, 126, 481-487. https://doi.org/10.1016/j.watres.2017.09.057

Chruszcz-Lipska, K., Winid, B., Madalska, G. A., Macuda, J., & Łukańko, Ł. (2021). High content of boron in curative water: from the spa to industrial recovery of borates?(Poland as a case study). Minerals, 11(1), 8. https://doi.org/10.3390/min11010008

Cortes, S., Reynaga-Delgado, E., Sancha, A., & Ferreccio, C. (2011). Boron exposure assessment using drinking water and urine in the North of Chile. Science of the Total Environment, 410, 96-101. https://doi.org/10.1016/j.scitotenv.2011.08.073

Darwish, N. B., Kochkodan, V., & Hilal, N. (2015). Boron removal from water with fractionized Amberlite IRA743 resin. Desalination, 370, 1-6. https://doi.org/10.1016/j.desal.2015.05.009

Darwish, N. B., Kochkodan, V., & Hilal, N. (2017). Microfiltration of micro-sized suspensions of boron-selective resin with PVDF membranes. Desalination, 403, 161-171. https://doi.org/10.1016/j.desal.2016.04.018

Demey, H., Vincent, T., Ruiz, M., Sastre, A., & Guibal, E. (2014). Development of a new chitosan/Ni (OH) 2-based sorbent for boron removal. Chemical Engineering Journal, 244, 576-586. https://doi.org/10.1016/j.cej.2014.01.052

Dolati, M., Aghapour, A. A., Khorsandi, H., & Karimzade, S. (2017). Boron removal from aqueous solutions by electrocoagulation at low concentrations. Journal of Environmental Chemical Engineering, 5(5), 5150-5156. https://doi.org/10.1016/j.jece.2017.09.055

Dydo, P., & Turek, M. (2013). Boron transport and removal using ion-exchange membranes: A critical review. Desalination, 310, 2-8. https://doi.org/10.1016/j.desal.2012.08.024

Edition, F. (2011). Guidelines for drinking-water quality. WHO chronicle, 38(4), 104-108.

Ezechi, E. H., Isa, M. H., bin Mohamed Kutty, S. R., & Ahmed, Z. (2015). Electrochemical removal of boron from produced water and recovery. Journal of Environmental Chemical Engineering, 3(3), 1962-1973. https://doi.org/10.1016/j.jece.2015.05.015

Ezechi, E. H., Isa, M. H., Kutty, S. R. M., & Yaqub, A. (2014). Boron removal from produced water using electrocoagulation. Process safety and environmental protection, 92(6), 509-514. https://doi.org/10.1016/j.psep.2014.08.003

Fadaei, A. (2021). Comparison of Water Defluoridation Using Different Techniques. International Journal of Chemical Engineering, 2021. https://doi.org/10.1155/2021/2023895

Folaranmi, G., Bechelany, M., Sistat, P., Cretin, M., & Zaviska, F. (2020). Towards electrochemical water desalination techniques: a review on capacitive deionization, membrane capacitive deionization and flow capacitive deionization. Membranes, 10(5), 96. https://doi.org/10.3390/membranes10050096

Fuchida, S., Hobo, S., Tsuchiya, K., Tanaka, Y., Nakamura, T., & Tokoro, C. (2020). Experimental Investigation of Boron Removal Mechanism from Wastewater by Calcined Ettringite. Water, Air, & Soil Pollution, 231(7), 1-9. https://doi.org/10.1007/s11270-020-04713-9

Guan, Z., Lv, J., Bai, P., & Guo, X. (2016). Boron removal from aqueous solutions by adsorption—A review. Desalination, 383, 29-37. https://doi.org/10.1016/j.desal.2015.12.026

Güler, E., Kabay, N., Yüksel, M., Yiğit, N., Kitiş, M., & Bryjak, M. (2011). Integrated solution for boron removal from seawater using RO process and sorption-membrane filtration hybrid method. Journal of Membrane Science, 375(1-2), 249-257. https://doi.org/10.1016/j.memsci.2011.03.050

Hassan, A., & Nawaz, M. (2014). Microbiological and physicochemical assessments of groundwater quality at Punjab, Pakistan. African Journal of Microbiology Research, 8(28), 2672-2681. https://academicjournals.org/journal/AJMR/article-full-text-pdf/852257345925

Heredia, A. l. C., de la Fuente García-Soto, M., Narros Sierra, A., Mendoza, S. M., Gómez Avila, J., & Crivello, M. n. E. (2019). Boron removal from aqueous solutions by synthetic MgAlFe mixed oxides. Industrial & Engineering Chemistry Research, 58(23), 9931-9939. https://doi.org/10.1021/acs.iecr.9b02259

Hilal, N., Kim, G., & Somerfield, C. (2011). Boron removal from saline water: a comprehensive review. Desalination, 273(1), 23-35. https://doi.org/10.1016/j.desal.2010.05.012

Hoshina, H., Chen, J., Amada, H., & Seko, N. (2021). Chelating Fabrics Prepared by an Organic Solvent-Free Process for Boron Removal from Water. Polymers, 13(7), 1163. https://doi.org/10.3390/polym13071163

Hu, J., Pu, Y., Ueda, M., Zhang, X., & Wang, L. (2016). Charge-aggregate induced (CAI) reverse osmosis membrane for seawater desalination and boron removal. Journal of Membrane Science, 520, 1-7. https://doi.org/10.1016/j.memsci.2016.07.053

Hussain, A., Sharma, R., Minier-Matar, J., Hirani, Z., & Adham, S. (2019). Application of emerging ion exchange resin for boron removal from saline groundwater. Journal of water process engineering, 32, 100906. https://doi.org/10.1016/j.jwpe.2019.100906

Iizuka, A., Takahashi, M., Nakamura, T., & Yamasaki, A. (2014). Boron removal performance of a solid sorbent derived from waste concrete. Industrial & Engineering Chemistry Research, 53(10), 4046-4051. https://doi.org/10.1021/ie402176t

Ince, A., Karagoz, B., & Bicak, N. (2013). Solid tethered imino-bis-propanediol and quaternary amine functional copolymer brushes for rapid extraction of trace boron. Desalination, 310, 60-66. https://doi.org/10.1016/j.desal.2012.06.017

IoSaIRo, I. (2010). Drinking water—physical and chemical specifications. Iran: Institute of Standards and Industrial Research of Iran.

Irawan, C., Kuo, Y.-L., & Liu, J. (2011). Treatment of boron-containing optoelectronic wastewater by precipitation process. Desalination, 280(1-3), 146-151. https://doi.org/10.1016/j.desal.2011.06.064

Isa, M. H., Ezechi, E. H., Ahmed, Z., Magram, S. F., & Kutty, S. R. M. (2014). Boron removal by electrocoagulation and recovery. Water research, 51, 113-123. https://doi.org/10.1016/j.watres.2013.12.024

Kabay, N., Güler, E., & Bryjak, M. (2010). Boron in seawater and methods for its separation—a review. Desalination, 261(3), 212-217. https://doi.org/10.1016/j.desal.2010.05.033

Kabay, N., Köseoğlu, P., Yapıcı, D., Yüksel, Ü., & Yüksel, M. (2013). Coupling ion exchange with ultrafiltration for boron removal from geothermal water-investigation of process parameters and recycle tests. Desalination, 316, 17-22. https://doi.org/10.1016/j.desal.2013.01.027

Kadam, A., Wagh, V., Umrikar, B., & Sankhua, R. (2020). An implication of boron and fluoride contamination and its exposure risk in groundwater resources in semi-arid region, Western India. Environment, development and sustainability, 22(7), 7033-7056. https://doi.org/10.1007/s10668-019-00527-w

Kameda, T., Yamamoto, Y., Kumagai, S., & Yoshioka, T. (2018). Mechanism and kinetics of aqueous boron removal using MgO. Journal of water process engineering, 26, 237-241. https://doi.org/10.1016/j.jwpe.2018.10.016

Kartikaningsih, D., Shih, Y.-J., & Huang, Y.-H. (2016). Boron removal from boric acid wastewater by electrocoagulation using aluminum as sacrificial anode. Sustainable Environment Research, 26(4), 150-155.

Khaoula, M., Wided, B., Chiraz, H., & Béchir, H. (2013). Boron removal by electrocoagulation using full factorial design. Journal of Water Resource and Protection, 2013. http://www.scirp.org/journal/PaperInformation.aspx?PaperID=37325

Kheriji, J., Tabassi, D., Bejaoui, I., & Hamrouni, B. (2016). Boron removal from model water by RO and NF membranes characterized using SK model. Membrane Water Treatment, 7(3), 193-207. https://doi.org/10.12989/mwt.2016.7.3.193

Kijański, M., Bandura-Zalska, B., Dydo, P., & Turek, M. (2013). The concept of a system for electrodialytic boron removal into alkaline concentrate. Desalination, 310, 75-80. https://doi.org/10.1016/j.desal.2012.10.010

Kir, E., Gurler, B., & Gulec, A. (2011). Boron removal from aqueous solution by using plasma-modified and unmodified anion-exchange membranes. Desalination, 267(1), 114-117. https://doi.org/10.1016/j.desal.2010.08.037

Kluczka, J., Korolewicz, T., Zołotajkin, M., & Adamek, J. (2015). Boron removal from water and wastewater using new polystyrene-based resin grafted with glycidol. Water resources and industry, 11, 46-57. https://doi.org/10.1016/j.wri.2015.05.001

Kluczka, J., Korolewicz, T., Zołotajkin, M., Simka, W., & Raczek, M. (2013). A new adsorbent for boron removal from aqueous solutions. Environmental technology, 34(11), 1369-1376. https://doi.org/10.1080/09593330.2012.750380

Kluczka, J., Trojanowska, J., & Zołotajkin, M. (2015). Utilization of fly ash zeolite for boron removal from aqueous solution. Desalination and Water Treatment, 54(7), 1839-1849. https://doi.org/10.1080/19443994.2014.892033

Kmiecik, E., Tomaszewska, B., Wątor, K., & Bodzek, M. (2016). Selected problems with boron determination in water treatment processes. Part I: comparison of the reference methods for ICP-MS and ICP-OES determinations. Environmental Science and Pollution Research, 23(12), 11658-11667. https://doi.org/10.1007/s11356-016-6328-7

Köse, T. E., Demiral, H., & Öztürk, N. (2011). Adsorption of boron from aqueous solutions using activated carbon prepared from olive bagasse. Desalination and Water Treatment, 29(1-3), 110-118. https://doi.org/10.5004/dwt.2011.2091

Kuokkanen, V., & Kuokkanen, T. (2013). Recent applications of electrocoagulation in treatment of water and wastewater—a review. Green and Sustainability Chemistry, 3(2). http://www.scirp.org/journal/PaperInformation.aspx?PaperID=31993

Kurashina, M., Inoue, T., Tajima, C., & Kanezaki, E. (2015). Removal of borate by coprecipitation with Mg/Al layered double hydroxide. Modern Physics Letters B, 29(06n07), 1540031. https://doi.org/10.1142/S021798491540031X

Li, Y., Wang, S., Song, X., Zhou, Y., Shen, H., Cao, X., . . . Gao, C. (2020). High boron removal polyamide reverse osmosis membranes by swelling induced embedding of a sulfonyl molecular plug. Journal of Membrane Science, 597, 117716. https://doi.org/10.1016/j.memsci.2019.117716

Lin, J.-Y., Shih, Y.-J., Chen, P.-Y., & Huang, Y.-H. (2016). Precipitation recovery of boron from aqueous solution by chemical oxo-precipitation at room temperature. Applied Energy, 164, 1052-1058. https://doi.org/10.1016/j.apenergy.2014.12.058

Liu, L., Xie, X., Qi, S., Li, R., Zhang, X., Song, X., & Gao, C. (2019). Thin film nanocomposite reverse osmosis membrane incorporated with UiO-66 nanoparticles for enhanced boron removal. Journal of Membrane Science, 580, 101-109. https://doi.org/10.1016/j.memsci.2019.02.072

Liu, X., Xu, C., Chen, P., Li, K., Zhou, Q., Ye, M., . . . Lu, Y. (2022). Advances in Technologies for Boron Removal from Water: A Comprehensive Review. International journal of environmental research and public health, 19(17), 10671. https://doi.org/10.3390/ijerph191710671

Loizou, E., Kanari, P. N., Kyriacou, G., & Aletrari, M. (2010). Boron determination in a multi element national water monitoring program: the absence of legal limits. Journal für Verbraucherschutz und Lebensmittelsicherheit, 5(3), 459-463. https://doi.org/10.1007/s00003-010-0629-4

Luo, L., Zhou, Z., Chung, T.-S., Weber, M., Staudt, C., & Maletzko, C. (2016). Experiments and modeling of boric acid permeation through double-skinned forward osmosis membranes. Environmental science & technology, 50(14), 7696-7705. https://doi.org/10.1021/acs.est.5b06166

Luo, Q., Zeng, M., Wang, X., Huang, H., Wang, X., Liu, N., & Huang, X. (2020). Glycidol-functionalized macroporous polymer for boron removal from aqueous solution. Reactive and Functional Polymers, 150, 104543. https://doi.org/10.1016/j.reactfunctpolym.2020.104543

Maddah, H. A., Alzhrani, A. S., Bassyouni, M., Abdel-Aziz, M., Zoromba, M., & Almalki, A. M. (2018). Evaluation of various membrane filtration modules for the treatment of seawater. Applied Water Science, 8(6), 1-13. https://doi.org/10.1007/s13201-018-0793-8

Massara, T. M., Yilmaz, A. E., Cengiz, I., Malamis, S., Yilmaz, M. T., Komesli, O. T., . . . Katsoua, E. (2018). The effect of initial pH and retention time on boron removal by continuous electrocoagulation process. Desalination and Water Treatment, 112, 1-9. https://doi.org/10.5004/dwt.2018.22279

Mohammadi, V., Tabatabaee, M., Fadaei, A., & Mirhoseini, S. A. (2021). Study of Nickel Nanoparticles in Highly Porous Nickel Metal–Organic Framework for Efficient Heterogeneous Catalytic Ozonation of Linear Alkyl Benzene Sulfonate in Water. Ozone: Science & Engineering, 43(3), 239-253. https://doi.org/10.1080/01919512.2020.1782725

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group*, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine, 151(4), 264-269. https://doi.org/10.3736/jcim20090918

Nagasawa, H., Iizuka, A., Yamasaki, A., & Yanagisawa, Y. (2008, December). Boron removal from aqueous solution by bipolar electrodialysis. In AIChE annual meeting, conference proceedings. https://tohoku.pure.elsevier.com/en/publications/boron-removal-from-aqueous-solution-by-bipolar-electrodialysis

Najid, N., Kouzbour, S., Ruiz-García, A., Fellaou, S., Gourich, B., & Stiriba, Y. (2021). Comparison analysis of different technologies for the removal of boron from seawater: A review. Journal of Environmental Chemical Engineering, 105133. https://doi.org/10.1016/j.jece.2021.105133

Nasef, M. M., Nallappan, M., & Ujang, Z. (2014). Polymer-based chelating adsorbents for the selective removal of boron from water and wastewater: a review. Reactive and Functional Polymers, 85, 54-68. https://doi.org/10.1016/j.reactfunctpolym.2014.10.007

Noguchi, M., Nakamura, Y., Shoji, T., Iizuka, A., & Yamasaki, A. (2018). Simultaneous removal and recovery of boron from waste water by multi-step bipolar membrane electrodialysis. Journal of water process engineering, 23, 299-305. https://doi.org/10.1016/j.jwpe.2018.04.010

Ozyurt, B., Camcioglu, S., Firtin, M., Ates, C., Hapoglu, H., & Treatment, W. (2019). Boron removal from industrial wastewaters by means of optimized sequential chemical precipitation and coagulation processes. Desalin. Water Treat, 172, 292-300. http://doi.org/10.5004/dwt.2019.24932

Pavlichenko, L., Rodrigo-Ilarri, J., & Rysmagambetova, A. (2018). The applicability assessment of technical solutions for a feasibility study on the purification of groundwater in the Ilek River Valley from Boron for the modern hydro chemical situation. Eurasian Journal of Ecology, 54(1), 35-48. https://doi.org/10.26577/EJE-2018-1-800

Ping, Q., Abu-Reesh, I. M., & He, Z. (2016). Enhanced boron removal by electricity generation in a microbial fuel cell. Desalination, 398, 165-170. https://doi.org/10.1016/j.desal.2016.07.031

Rahman, M., Tushar, M. A. N., Zahid, A., Ahmed, K. M. U., Siddique, M. A. M., & Mustafa, M. G. (2021). Spatiotemporal distribution of boron in the groundwater and human health risk assessment from the coastal region of Bangladesh. Environmental Science and Pollution Research, 28(17), 21964-21977. https://doi.org/10.1007/s11356-020-11682-3

Raval, H., Samnani, M., Gauswami, M., & Makwana, P. (2017). Combinatorial approach for removal of boron from water by membrane surface modification and boron complex formation. Journal of water process engineering, 19, 139-146. https://doi.org/10.1016/j.jwpe.2017.07.023

Razavi, T., Fadaei, A., Sadeghi, M., & Sedehi, M. (2020). Evaluation of the Photosonolysis Process Efficacy for the Removal of Anionic Surfactant Linear Alkyl Benzene Sulfonate from Aqueous Solutions. Journal of Ecological Engineering, 21(6), 1-7. http://dx.doi.org/10.12911/22998993/122192

Rehman, F., & Cheema, T. (2017). Boron contamination in groundwater at a sewage waste disposal facility near Jeddah, Saudi Arabia. Environmental Earth Sciences, 76(5), 218. https://doi.org/10.1007/s12665-017-6528-6

Rioyo, J., Aravinthan, V., Bundschuh, J., & Lynch, M. (2018). ‘High-pH softening pretreatment’for boron removal in inland desalination systems. Separation and Purification Technology, 205, 308-316. https://doi.org/10.1016/j.seppur.2018.05.030

Risplendi, F., Raffone, F., Lin, L.-C., Grossman, J. C., & Cicero, G. (2019). Fundamental insights on hydration environment of boric acid and its role in separation from saline water. The Journal of Physical Chemistry C, 124(2), 1438-1445. https://doi.org/10.1021/acs.jpcc.9b10065

Ruiz-García, A., León, F., & Ramos-Martín, A. (2019). Different boron rejection behavior in two RO membranes installed in the same full-scale SWRO desalination plant. Desalination, 449, 131-138. https://doi.org/10.1016/j.desal.2018.07.012

Samatya, S., Köseoğlu, P., Kabay, N., Tuncel, A., & Yüksel, M. (2015). Utilization of geothermal water as irrigation water after boron removal by monodisperse nanoporous polymers containing NMDG in sorption–ultrafiltration hybrid process. Desalination, 364, 62-67. https://doi.org/10.1016/j.desal.2015.02.030

Sánchez, J., Wolska, J., Yörükoğlu, E., Rivas, B. L., Bryjak, M., & Kabay, N. (2016). Removal of boron from water through soluble polymer based on N-methyl-D-glucamine and regenerated-cellulose membrane. Desalination and Water Treatment, 57(2), 861-869. https://doi.org/10.1080/19443994.2014.979369

Sari, M. A., & Chellam, S. (2015). Mechanisms of boron removal from hydraulic fracturing wastewater by aluminum electrocoagulation. Journal of colloid and interface science, 458, 103-111. https://doi.org/10.1016/j.jcis.2015.07.035

Sasaki, K., Hayashi, Y., Nakamura, T., Guo, B., & Tian, Q. (2020). Stabilization of borate by hot isostatic pressing after co-precipitation with hydroxyapatite using MAP. Chemosphere, 254, 126860. https://doi.org/10.1016/j.chemosphere.2020.126860

Sasaki, K., Hayashi, Y., Toshiyuki, K., & Guo, B. (2018). Simultaneous immobilization of borate, arsenate, and silicate from geothermal water derived from mining activity by co-precipitation with hydroxyapatite. Chemosphere, 207, 139-146. https://doi.org/10.1016/j.chemosphere.2018.05.074

Shih, Y.-J., Liu, C.-H., Lan, W.-C., & Huang, Y.-H. (2014). A novel chemical oxo-precipitation (COP) process for efficient remediation of boron wastewater at room temperature. Chemosphere, 111, 232-237. https://doi.org/10.1016/j.chemosphere.2014.03.121

Shultz, S., Bass, M., Semiat, R., & Freger, V. (2018). Modification of polyamide membranes by hydrophobic molecular plugs for improved boron rejection. Journal of Membrane Science, 546, 165-172. https://doi.org/10.1016/j.memsci.2017.10.003

Sun, M., Li, M., Zhang, X., Wu, C., & Wu, Y. (2020). Graphene oxide modified porous P84 co-polyimide membranes for boron recovery by bipolar membrane electrodialysis process. Separation and Purification Technology, 232, 115963. https://doi.org/10.1016/j.seppur.2019.115963

Taie, M., Fadaei, A., Sadeghi, M., Hemati, S., & Mardani, G. (2021). Comparison of the Efficiency of Ultraviolet/Zinc Oxide (UV/ZnO) and Ozone/Zinc Oxide (O3/ZnO) Techniques as Advanced Oxidation Processes in the Removal of Trimethoprim from Aqueous Solutions. International Journal of Chemical Engineering, 2021. https://doi.org/10.1155/2021/9640918

Tang, Y. P., Luo, L., Thong, Z., & Chung, T. S. (2017). Recent advances in membrane materials and technologies for boron removal. Journal of Membrane Science, 541, 434-446. https://doi.org/10.1016/j.memsci.2017.07.015

Tang, Y. P., Yuwen, S., Chung, T. S., Weber, M., Staudt, C., & Maletzko, C. (2016). Synthesis of hyperbranched polymers towards efficient boron reclamation via a hybrid ultrafiltration process. Journal of Membrane Science, 510, 112-121. https://doi.org/10.1016/j.memsci.2016.03.024

Ting, T.-M., Hoshina, H., Seko, N., & Tamada, M. (2013). Removal of boron by boron-selective adsorbent prepared using radiation induced grafting technique. Desalination and Water Treatment, 51(13-15), 2602-2608. https://doi.org/10.1080/19443994.2012.749054

Tomaszewska, B., & Szczepański, A. (2014). Possibilities for the efficient utilisation of spent geothermal waters. Environmental Science and Pollution Research, 21(19), 11409-11417. https://doi.org/10.1007/s11356-014-3076-4

Ulatowska, J., Polowczyk, I., Bastrzyk, A., Koźlecki, T., & Sawiński, W. (2020). Fly ash as a sorbent for boron removal from aqueous solutions: Equilibrium and thermodynamic studies. Separation Science and Technology, 55(12), 2149-2157. https://doi.org/10.1080/01496395.2019.1612434

Vasudevan, S., Lakshmi, J., & Sozhan, G. (2013). Electrochemically assisted coagulation for the removal of boron from water using zinc anode. Desalination, 310, 122-129. https://doi.org/10.1016/j.desal.2012.01.016

Wang, B., Guo, X., & Bai, P. (2014). Removal technology of boron dissolved in aqueous solutions–a review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444, 338-344. https://doi.org/10.1016/j.colsurfa.2013.12.049

Wang, B., Lin, H., Guo, X., & Bai, P. (2014). Boron removal using chelating resins with pyrocatechol functional groups. Desalination, 347, 138-143. https://doi.org/10.1016/j.desal.2014.05.035

Wang, S., Zhou, Y., & Gao, C. (2018). Novel high boron removal polyamide reverse osmosis membranes. Journal of Membrane Science, 554, 244-252. https://doi.org/10.1016/j.memsci.2018.03.014

Wang, Z., Ma, K., Zhang, Y., Zhang, X., Ngo, H. H., Meng, J., & Du, L. (2021). High internal phase emulsion hierarchical porous polymer grafting polyol compounds for boron removal. Journal of water process engineering, 41, 102025. https://doi.org/10.1016/j.jwpe.2021.102025

Wang, Z., Wang, P., Cao, J., Zhang, Y., Cheng, B., & Meng, J. (2017). A novel mixed matrix membrane allowing for flow-through removal of boron. Chemical Engineering Journal, 308, 557-567. https://doi.org/10.1016/j.cej.2016.09.094

Wei, Y.-T., Zheng, Y.-M., & Chen, J. P. (2011). Design and fabrication of an innovative and environmental friendly adsorbent for boron removal. Water research, 45(6), 2297-2305. https://doi.org/10.1016/j.watres.2011.01.003

Wided, B., Khawla, M., Eya, B. K., & Béchir, H. (2014). Evaluation of boron removal by coagulation-Flocculation and Electrocoagulation. International Journal of Engineering Research, 3(2).

Wolska, J., & Bryjak, M. (2013). Methods for boron removal from aqueous solutions—A review. Desalination, 310, 18-24. https://doi.org/10.1016/j.desal.2012.08.003

Xu, Z., Su, H., Zhang, J., Liu, W., Zhu, Z., Wang, J., . . . Qi, T. (2021). Recovery of boron from brines with high magnesium content by solvent extraction using aliphatic alcohol. RSC Advances, 11(26), 16096-16105. https://doi.org/10.1039/D1RA01906F

Yilmaz, A. E., Boncukcuoğlu, R., Bayar, S., Fil, B. A., & Kocakerim, M. M. (2012). Boron removal by means of chemical precipitation with calcium hydroxide and calcium borate formation. Korean Journal of Chemical Engineering, 29(10), 1382-1387. https://doi.org/10.1007/s11814-012-0040-1

Yilmaz, İ., Kabay, N., Brjyak, M., Yüksel, M., Wolska, J., & Koltuniewicz, A. (2006). A submerged membrane–ion-exchange hybrid process for boron removal. Desalination, 198(1-3), 310-315. https://doi.org/10.1016/j.desal.2006.01.031

Yoshikawa, E., Sasaki, A., & Endo, M. (2012). Removal of boron from wastewater by the hydroxyapatite formation reaction using acceleration effect of ammonia. Journal of hazardous materials, 237, 277-282. https://doi.org/10.1016/j.jhazmat.2012.08.045

Yu, J., Hong, R., Gao, C., Cheng, A., & Zhang, L. (2018). Pinnoite deposit in DaQaidam saline lake, Qaidam Basin, China: hydroclimatic, sedimentologic, and geochemical constraints. Minerals, 8(6), 258. https://doi.org/10.3390/min8060258

Yürüm, A., Taralp, A., Bıçak, N., Özbelge, H. Ö., & Yılmaz, L. (2013). High performance ligands for the removal of aqueous boron species by continuous polymer enhanced ultrafiltration. Desalination, 320, 33-39. https://doi.org/10.1016/j.desal.2013.04.020

Zango, M. S., Sunkari, E. D., Abu, M., & Lermi, A. (2019). Hydrogeochemical controls and human health risk assessment of groundwater fluoride and boron in the semi-arid North East region of Ghana. Journal of Geochemical Exploration, 207, 106363. https://doi.org/10.1016/j.gexplo.2019.106363

Zeboudji, B., Drouiche, N., Lounici, H., Mameri, N., & Ghaffour, N. (2013). The influence of parameters affecting boron removal by electrocoagulation process. Separation Science and Technology, 48(8), 1280-1288. https://doi.org/10.1080/01496395.2012.731125

Zhang, R., Xie, Y., Song, J., Xing, L., Kong, D., Li, X.-M., & He, T. (2016). Extraction of boron from salt lake brine using 2-ethylhexanol. Hydrometallurgy, 160, 129-136. https://doi.org/10.1016/j.hydromet.2016.01.001

Zohdi, N., Mahdavi, F., Abdullah, L. C., & Choong, T. S. (2014). Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid. Journal of Environmental Health Science and Engineering, 12(1), 1-12. https://doi.org/10.1186/2052-336X-12-3



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.