Article Classification
Environmental Science
Abstract
This review of the impact of large-scale pumping on arsenic distribution reveals that groundwater-fed irrigation and domestic withdrawal impart tremendous stress on the limited groundwater resource base and disrupts the dynamic equilibrium of the groundwater system of the Ganges–Meghna–Brahmaputra (GMB) delta in Southeast Asia. Excessive groundwater extraction through pumping affects the groundwater quality in three major ways. First, excessive pumping transports atmospheric oxygen and organic-rich surface water to the subsurface. Second, it promotes arsenic build up in surface soil irrigated with arsenic-laced groundwater. Finally, it shifts groundwater replenishment zones lying at various depths near extraction points, thus, carrying dissolved arsenic from shallow Holocene paleo-channel aquifers to deeper paleo-channel aquifers of the Pleistocene age. Optimal management for safe and sustainable groundwater exploitation operations in the area must aim to ameliorate the deleterious impacts of pumping on groundwater quality through either technological or policy intervention.
References
Abedin, M. J., Cotter-Howells, J., & Meharg, A. A. (2002). Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant and soil, 240(2), 311-319.https://doi.org/10.1023/A:1015792723288
Abedin, M. J., Cresser, M. S., Meharg, A. A., Feldmann, J., & Cotter-Howells, J. (2002). Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environmental science & technology, 36(5), 962-968.https://doi.org/10.1021/es0101678
Acharyya, S. K., Lahiri, S., Raymahashay, B. C., & Bhowmik, A. (2000). Arsenic toxicity of groundwater in parts of the Bengal basin in India and Bangladesh: the role of Quaternary stratigraphy and Holocene sea-level fluctuation. Environmental Geology, 39(10), 1127-1137.
Akter, J., Sarker, M. H., Popescu, I., & Roelvink, D. (2016). Evolution of the Bengal Delta and its prevailing processes. Journal of Coastal Research, 32(5), 1212-1226.
Alam, M. B., & Sattar, M. A. (2000). Assessment of arsenic contamination in soils and waters in some areas of Bangladesh. Water Science and Technology, 42(7-8), 185-192.
https://doi.org/10.2166/wst.2000.0568
Ali, M. A., Badruzzaman, A. B. M., Jalil, M. A., Hossain, M. D., Ahmed, M. F., Masud, A. A., & Rahman, M. A. (2003). Fate of arsenic extracted with groundwater. Fate of Arsenic in the Environment, 7-20.
https://pdfs.semanticscholar.org/7da2/40c21abc72b2afcc28993d796bb729e3ba45.pdf
Alley, W. M., & Leake, S. A. (2004). The journey from safe yield to sustainability. Groundwater, 42(1), 12-16.
https://doi.org/10.1111/j.1745-6584.2004.tb02446.x
Alley, W. M., Healy, R. W., La Baugh, J. W., & Reilly, T. E. (2002). Flow and storage in groundwater systems. Science, 296(5575), 1985-1990.
https://doi.org/10.1126/science.1067123
Alley, W. M., Reilly, T. E., Franke, O. L. (2007). Effects of ground water development on ground water flow to and from surface water bodies.
http://pubs.usgs.gov/circ/circ1186/html/gw_effect.html
Anawar, H. M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., ... & Kato, K. (2003). Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. Journal of Geochemical Exploration, 77(2-3), 109-131.
https://doi.org/10.1016/S0375-6742(02)00273-x
BADC (1992). Deep Tubewell II Project. Final Report. Mott MacDonald Ltd. And Hunting Technical Services. Report for Bangladesh Agricultural Development Corporation and Overseas Development Administration (UK) Vol2.1. www.badc.gov.bd
Bandyopadhyay, N. (2015). Groundwater pollution a great threat to mankind. Journal of Centre for Groundwater Studies,46(IV). http://www.cgwskolkata.com/groundwater-journal.html
Bandyopadhyay, S. (2007). Evolution of the Ganga Brahmaputra delta: a review. Geographical review of India, 69(3), 235-268.
http://www.academia.edu/download/32170836/Geogr_Rev_Ind_69(3)_2007_Bandyopadhyay_GBD_Evolution.pdf
Bates, B., Kundzewicz, Z., & Wu, S. (2008). Climate change and water. Intergovernmental Panel on Climate Change Secretariat.
http://www.taccire.suanet.ac.tz:8080/xmlui/handle/123456789/552
Benner, S. G., & Fendorf, S. (2010). Arsenic in south Asia groundwater. Geography Compass, 4(10), 1532-1552. https://doi.org/10.1111/j.1749-8198.2010.00387.x
Bhattacharya, P., Chatterjee, D., & Jacks, G. (1997). Occurrence of arsenic-contaminatedGroundwater in alluvial aquifers from Delta plains, eastern India: options for safe drinking water supply. International Journal of Water Resources Development, 13(1), 79-92. https://doi.org/10.1080/07900629749944
Biswas, A., Nath, B., Bhattacharya, P., Halder, D., Kundu, A. K., Mandal, U., …& Jacks, G. (2012). Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply. Science of the Total Environment, 431, 402-412. https://doi.org/10.1016/j.scitotenv.2012.05.031
Brammer, H., & Ravenscroft, P. (2009). Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environment International, 35(3), 647-654. https://doi.org/10.1016/j.envint.2008.10.004
Bredehoeft, J. D. (2002). The water budget myth revisited: why hydrogeologists model. Groundwater, 40(4), 340-345.
https://ngwa.onlinelibrary.wiley.com/doi/abs/10.1111/j.1745-6584.2002.tb02511.x
British Geological Survey, & Mott MacDonald International Ltd. (1999). Groundwater Studies for Arsenic Contamination in Bangladesh: Main report (Vol. 1). British Geological Survey. https://www.bgs.ac.uk/
Budhu, M., & Adiyaman, I. B. (2010). Mechanics of land subsidence due to groundwater pumping. International journal fornumerical and analytical methods in geomechanics, 34(14), 1459-1478.https://doi.org/10.1002/nag.863
CGWB. (1994). Hydrogeological atlas of West Bengal. Scale 1:2,000,000Eastern Region Government of India.http://wbwridd.gov.in/swid/mapimages/FINAL_WB.pdf
Chai, J. C., Shen, S. L., Zhu, H. H., & Zhang, X. L. (2004). Land subsidence due to groundwater drawdown in Shanghai. Geotechnique, 54(2), 143-147.
https://doi.org/10.1680/geot.2004.54.2.143
Chakraborti, D., Basu, G. K., Biswas, B. K., Chowdhury, U. K., Rahman, M. M., Paul, K., … & Ray, S. L. (2001). Characterization of arsenic bearing sediments in Gangetic delta of West Bengal-India. Arsenic exposure and health effects. New York: Elsevier Science, 27-52.
Chakraborty, M., Mukherjee, A., & Ahmed, K. M. (2015). A review of groundwater arsenic in the Bengal Basin, Bangladesh and India: from source to sink. Current Pollution Reports, 1(4), 220-247.https://doi.org/10.1007/s40726-015-0022-0
Charlet, L., Chakraborty, S., Appelo, C. A. J., Roman-Ross, G., Nath, B., Ansari, A. A., … & Mallik, S. B. (2007). Chemodynamics of an arsenic “hotspot” in a West Bengal aquifer: a field and reactive transport modeling study. Applied Geochemistry, 22(7), 1273-1292.https://doi.org/10.1016/j.apgeochem.2006.12.022
Chirenje, T., Epstein, C., & Mueller, R. (2007). Water quality issues in the outer coastal plains: New Jersey. Developments in Environmental Science, 5, 561-589.
https://doi.org/10.1016/S1474-8177(07)05026-7
Chowdhury, T. R., Basu, G. K., Mandal, B. K., Biswas, B. K., Samanta, G., Chowdhury, U. K., & Roy, S. (1999). Arsenic poisoning in the Ganges delta. Nature, 401(6753), 545-546. https://doi.org/10.1038/44056
Coleman, J. M. (1981). Deltas: processes and models of deposition for exploration: Minneapolis. Minnesota, Burgess, CEPCO Division, 124.
https://books.google.co.id/books/about/Deltas.html?id=TysAxQEACAAJ&redir_esc=y
Coughanowr, C. (1994). Ground water. Water-Related Issues of the Humid Tropics and Other Warm Humid Regions. IHP Humid Tropics Programme. Serie Nº8. UNESCO.
https://www.ircwash.org/resources/ihp-humid-tropics-programme-series
Cubadda, F., Ciardullo, S., D’Amato, M., Raggi, A., Aureli, F., & Carcea, M. (2010). Arsenic contamination of the environment− food chain: A survey on wheat as a test plant to investigate phytoavailable arsenic in Italian agricultural soils and as a source of inorganic arsenic in the diet. Journal of agricultural and food chemistry, 58(18), 10176-10183. https://doi.org/10.1021/jf102084p
Das, D., Samanta, G., Mandal, B. K., Chowdhury, T. R., Chanda, C. R., Chowdhury, P. P., Basu, G. K., & Chakraborti, D. (1996). Arsenic in groundwater in six districts of West Bengal, India. Environ Geochem Health, 18(1), 5-15. https://doi.org/10.1007/BF01757214
DDWS. (2006). Summary of nation-wise statistics from Rajiv Gandhi drinking water mission. New Delhi: Department of Drinking Water Resources, Govt. of India. http://mowr.gov.in/
Dittmar, J., Voegelin, A., Roberts, L. C., Hug, S. J., Saha, G. C., Ali, M. A., ... & Kretzschmar, R. (2007). Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil. Environmental Science & Technology, 41(17), 5967-5972.
Don, N. C., Hang, N. T. M., Araki, H., Yamanishi, H., & Koga, K. (2006). Groundwater resources and management for paddy field irrigation and associated environmental problems in an alluvial coastal lowland plain. Agricultural water management, 84(3), 295-304. https://doi.org/10.1016/j.agwat.2006.03.006
Dowling, C. B., Poreda, R. J., Basu, A. R., Peters, S. L., & Aggarwal, P. K. (2002). Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Resources Research, 38(9), 12-1. https://doi.org/10.1029/2001WR000968
Duxbury, J. M. (2007). Remediation of arsenic for agriculture sustainability, food security and health in Bangladesh. http://www.fao.org/3/a-ap102e.pdf
Duxbury, J. M., & Zavala, Y. J. (2005, January). What are safe levels of arsenic in food and soils. In Behavior of arsenic in aquifers, soils and plants (Conference Proceedings), International Symposium, Dhaka.
Duxbury, J. M., Mayer, A. B., Lauren, J. G., & Hassan, N. (2003). Food chain aspects of arsenic contamination in Bangladesh: effects on quality and productivity of rice. Journal of Environmental Science and Health, Part A, 38(1), 61-69. https://doi.org/10.1081/ESE-120016881
Erban, L. E., Gorelick, S. M., & Zebker, H. A. (2014). Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environmental Research Letters, 9(8), 084010. https://iopscience.iop.org/article/10.1088/1748-9326/9/8/084010/meta
Essink, G. H. O. (2001). Improving fresh groundwater supply—problems and solutions. Ocean & Coastal Management, 44(5-6), 429-449. https://doi.org/10.1016/S0964-5691(01)00057-6
FAO (Food and Agriculture Organization). (2005). AQUASTAT database.
www.fao.org/ag/agl/aglw/aquastat/main/index.stm
Farooq, S. H., Chandrasekharam, D., Berner, Z., Norra, S., & Stüben, D. (2010). Influence of traditional agricultural practices on mobilization of arsenic from sediments to groundwater in Bengal delta. Water research, 44(19), 5575-5588.
https://doi.org/10.1016/j.watres.2010.05.057
Fazal, M. A., Kawachi, T., & Ichion, E. (2001). Extent and severity of groundwater arsenic contamination in Bangladesh. Water International, 26(3), 370-379.
https://doi.org/10.1080/02508060108686929
Feyen, L., & Gorelick, S. M. (2005). Framework to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas. Water Resources Research, 41(3). https://doi.org/10.1029/2003WR002901
Folch, A., Menció, A., Puig, R., Soler, A., & Mas-Pla, J. (2011). Groundwater development effects on different scale hydrogeological systems using head, hydrochemical and isotopic data and implications for water resources management: The Selva basin (NE Spain). Journal of Hydrology, 403(1-2), 83-102. https://doi.org/10.1016/j.jhydrol.2011.03.041
Ghassemi, F., Jakeman, A. J., & Nix, H. A. (1995). Salinisation of land and water resources: human causes, extent, management and case studies. CAB international.
https://www.cabdirect.org/cabdirect/abstract/19976767459
Goodbred Jr, S. L. (2003). Response of the Ganges dispersal system to climate change: a source-to-sink view since the last interstade. Sedimentary Geology, 162(1-2), 83-104.
https://www.sciencedirect.com/science/article/abs/pii/S0037073803002173
Graham, P. W., Baker, A., & Andersen, M. S. (2015). Dissolved organic carbon mobilisation in a groundwater system stressed by pumping. Scientific Reports, 5, 18487.
https://doi.org/10.1038/srep18487
Guillot, S., & Charlet, L. (2007). Bengal arsenic, an archive of Himalaya orogeny and paleohydrology. Journal of Environmental Science and Health, Part A, 42(12), 1785-1794. https://doi.org/10.1080/10934520701566702
Gupta, A. (2007). Large rivers geomorphology and Management. United Kingdom: Chichester, Wiley 689p.
Gurung, J. K., Ishiga, H., & Khadka, M. S. (2005). Geological and geochemical examination of arsenic contamination in groundwater in the Holocene Terai Basin, Nepal. Environmental Geology, 49(1), 98-113. https://doi.org/10.1007/s00254-005-0063-6
Harvey, C. F., Ashfaque, K. N., Yu, W, Badruzzaman, A. B. M., Ali, M. A., Oates, P. M. … & Ahmed, M. F. (2006) Groundwater dynamics and arsenic contamination in Bangladesh. Chemical Geology,228(1-3), 112–136. https://doi.org/10.1016/j.chemgeo.2005.11.025
Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., …& Oates, P. M. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298(5598), 1602-1606. https://doi.org/10.1126/science.1076978
Heikens, A. (2006). Arsenic contamination of irrigation water, soil and crops in Bangladesh: Risk implications for sustainable agriculture and food safety in Asia. RAP Publication (FAO). http://agris.fao.org/agris-search/search.do?recordID=XF2007429249
Honerman, A., van Geen, A., Kent, D. V., Mathe, P. E., Zheng, Y., Dhar, R. K., … & Seddique, A. A. (2004). Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part I: Evidence from sediment profiles. Geochimica et Cosmochimica Acta, 68(17), 3459-3473. https://doi.org/10.1016/j.gca.2004.01.026
Howard, K. W. F., & Gelo, K. K. (2002). Intensive groundwater use in urban areas: the case of megacities. Intensive use of groundwater: challenges and opportunities, 484.
http://pubs.usgs.gov/circ/circ1186/html/gw_effect.html
Huq, S. I., Ahmed, K. M., Suktana, N., & Naidu, R. (2001). Extensive arsenic contamination of groundwater and soils of Bangladesh. In Arsenic in the Asia Pacific Region Workshop, Adelaide, Managing Arsenic for the Future (Vol. 94).
Islam, S. N. (2016). Deltaic floodplains development and wetland ecosystems management in the Ganges–Brahmaputra–Meghna Rivers Delta in Bangladesh. Sustainable Water Resources Management, 2(3), 237-256. https://doi.org/10.1007/s40899-016-0047-6
Kamra, S. K., Lal, K., Singh, O. P., & Boonstra, J. (2002). Effect of pumping on temporal changes in groundwater quality. Agricultural Water Management, 56(2), 169-178.
https://doi.org/10.1016/S0378-3774(02)00004-5
Karim, M. M., Komori, Y., & Alam, M. (1997). Subsurface arsenic occurrence and depth of contamination in Bangladesh. Journal of Environmental Chemistry, 7(4), 783-792.
https://doi.org/10.5985/jec.7.783
Keith, S. J., Wilson, L. G., Fitch, H. R., & Esposito, D. M. (1983). SOURCES OF SPATIAL‐TEMPORAL VARIABILITY IN GROUNDWATER QUALITY DATA AND METHODS OF CONTROL: This case study of the Cortaro, Arizona, monitoring program discusses controlling or accommodating sources of variability. Groundwater Monitoring & Remediation, 3(2), 21-32. https://doi.org/10.1111/j.1745-6592.1983.tb01196.x
Khandoker, R. A. (1987). Origin of elevated Barind-Madhupur areas, Bengal basin: result of neotectonic activities. Bangladesh Journal of Geology, 6(2), 1-9.
https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=17443
Kinniburgh, D. G., Gale, I. N., Smedley, P. L., Darling, W. G., West, J. M., Aldous, P. J., & O'Shea, M. J. (1994). The effects of historic abstraction of groundwater from the London Basin aquifers on groundwater quality. Applied Geochemistry, 9(2), 175-195.
https://doi.org/10.1016/0883-2927(94)90006-X
Kittrick, J. A., Fanning, D. S., Hossner, L. R. (1982). Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. Acid Sulfate Weathering, 10, 37-56. https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/sssaspecpub10.c3
Klump, S., Kipfer, R., Cirpka, O. A., Harvey, C. F., Brennwald, M. S., Ashfaque, K. N., … & Imboden, D. M. (2006). Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium. Environmental Science & Technology, 40(1), 243-250. https://doi.org/10.1021/es051284w
Konikow, L. F. (2005) Ground Water Depletion across the Nation. USGS.
http://pubs.usgs.gov/fs/fs-103-03/
Konikow, L. F., & Kendy, E. (2005). Groundwater depletion: A global problem. Hydrogeology Journal, 13(1), 317-320. https://doi.org/10.1007/s10040-004-0411-8
Kulkarni, H., & Shankar, P. V. (2009). Groundwater: towards an aquifer management framework. Economic and Political Weekly, 13-17.
https://www.epw.in/journal/2009/06/commentary/groundwater-towards-aquifer-management-framework.html
Kumar, M. D., & Shah, T. (2006). Groundwater pollution and contamination in India: the emerging challenge. IWMI-TATA Water Policy Program Draft Paper, 1, 14. https://www.researchgate.net/profile/Prabhat_Ranjan14/post/Should_people_pay_for_pollutions_imparted_by_them/attachment/59d6410779197b807799d23c/AS:433345634017280@1480329058323/download/ground-pollute4_FULL_.pdf
Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Doll, P., Kabat, P., Jimenez, B., … & Shiklomanov, I. (2007). Freshwater resources and their management. In: Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. and Hanson, C. E. (eds.) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp. 173-210. ISBN 9780521880091. http://centaur.reading.ac.uk/1017/
Langseth, P., & Stapenhurst, R. (2012). India-Water resources management sector review: groundwater regulation and management report. Agriculture & Rural Development (SASDA).
http://agris.fao.org/agris-search/search.do?recordID=US2012418595
Lenntech. (1993). Seawater intrusions in groundwater. Netherlands: The Technical University of Delft. http://www.lenntech.com/About-Lenntech.htm
Liu, C. W., Lin, K. H., &Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313(1-3), 77-89. https://doi.org/10.1016/S0048-9697(02)00683-6
Loáiciga, H. A. (2004). Analytic game—theoretic approach to ground-water extraction. Journal of Hydrology, 297(1-4), 22-33. https://doi.org/10.1016/j.jhydrol.2004.04.006
Mallick, S., & Rajagopal, N. R. (1996). Groundwater development in the arsenic-affected alluvial belt of West Bengal–some questions. Current Science, 70(11), 956-958.
https://www.jstor.org/stable/24111630
Mandal, B. K., Chowdhury, T. R., Samanta, G., Basu, G. K., Chowdhury, P. P., Chanda, C. R., …& Das, D. (1996). Arsenic in groundwater in seven districts of West Bengal, India–the biggest arsenic calamity in the world. Current science, 70(11), 976-986.
https://www.jstor.org/stable/24111635
McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., Ravenscroft, P., …& Lowry, D. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Applied Geochemistry, 19(8), 1255-1293.
https://doi.org/10.1016/j.apgeochem.2004.02.001
McArthur, J. M., Nath, B., Banerjee, D. M., Purohit, R., & Grassineau, N. (2011). Palaeosol control on groundwater flow and pollutant distribution: the example of arsenic. Environmental Science &Technology, 45(4), 1376-1383. https://doi.org/10.1021/es1032376
Meharg, A. A., & Rahman, M. M. (2003). Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environmental Science &Technology, 37(2), 229-234. https://doi.org/10.1021/es0259842
Michael, H. A., & Voss, C. I. (2008). Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin. Proceedings of the National Academy of Sciences, 105(25), 8531-8536. https://doi.org/10.1073/pnas.0710477105
Michael, H. A., & Voss, C. I. (2009a). Controls on groundwater flow in the Bengal Basin of India and Bangladesh: regional modeling analysis. Hydrogeology Journal, 17(7), 1561.
https://doi.org/10.1007/s10040-008-0429-4
Michael, H. A., & Voss, C. I. (2009b). Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh. Hydrogeology Journal, 17(6), 1329-1346.
Morgan, J. P., & McINTIRE, W. G. (1959). Quaternary geology of the Bengal basin, East Pakistan and India. Geological Society of America Bulletin, 70(3), 319-342.
https://doi.org/10.1130/0016-7606(1959)70%5b319:QGOTBB%5d2.0.CO;2
Morris, B. L., Lawrence, A. R., Chilton, P. J. C., Adams, B., Calow, R. C., &Klinck, B. A. (2003). Groundwater and its susceptibility to degradation: a global assessment of the problem and options for management (Vol. 3). United Nations Environment Programme. http://nora.nerc.ac.uk/id/eprint/19395/
MPO (Master Plan Organization). (1987). Groundwater resources of Bangladesh. Technical Report no. 5. Master Plan Organization/Hazra/Sir M MacDonald/Meta/EPC, Dhaka/USA/UK/USA/Bangladesh. https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1650362
Mukherjee, A. (2008). Deeper groundwater flow and chemistry in the arsenic affected western Bengal basin, West Bengal, India. Applied Geochemistry, 23(4), 863-894.
https://doi.org/10.1016/j.apgeochem.2007.07.011
Mukherjee, A., Fryar, A. E., & Howell, P. D. (2007). Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal basin, West Bengal, India. Hydrogeology Journal, 15(7), 1397. https://doi.org/10.1007/s10040-007-0208-7
Mukherjee, A., Fryar, A. E., & Thomas, W. A. (2009). Geologic, geomorphic and hydrologic framework and evolution of the Bengal basin, India and Bangladesh. Journal of Asian Earth Sciences, 34(3), 227-244. https://doi.org/10.1016/j.jseaes.2008.05.011
Mukherjee, A., Fryar, A. E., Scanlon, B. R., Bhattacharya, P., & Bhattacharya, A. (2011). Elevated arsenic in deeper groundwater of the western Bengal basin, India: Extent and controls from regional to local scale. Applied Geochemistry, 26(4), 600-613. https://doi.org/10.1016/j.apgeochem.2011.01.017
Negri, D. H. (1989). The common property aquifer as a differential game. Water Resources Research, 25(1), 9-15. https://doi.org/10.1029/WR025i001p00009
Neidhardt, H., Berner, Z., Freikowski, D., Biswas, A., Winter, J., Chatterjee, D., & Norra, S. (2013). Influences of groundwater extraction on the distribution of dissolved As in shallow aquifers of West Bengal, India. Journal of Hazardous Materials, 262, 941-950.
https://doi.org/10.1016/j.jhazmat.2013.01.044
Neumann, R. B., Ashfaque, K. N., Badruzzaman, A. B. M., Ali, M. A., Shoemaker, J. K., & Harvey, C. F. (2010). Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nature Geoscience, 3(1), 46-52. https://doi.org/10.1038/ngeo685
Nicholls, R. J.& Goodbred, S. L. (2004). Towards integrated assessment of Ganga-Brahmaputra delta, 5th International Conference on Asian Marine Geology.
https://eprints.soton.ac.uk/53186/
Nightingale, H. I., & Bianchi, W. C. (1980). Well‐Water Quality Changes Correlated with Well Pumping Time and Aquifer Parameters—Fresno, California. Groundwater, 18(3), 274-280. https://doi.org/10.1111/j.1745-6584.1980.tb03399.x
Noel, J. E., Gardner, B. D., & Moore, C. V. (1980). Optimal regional conjunctive water management. American Journal of Agricultural Economics, 62(3), 489-498.
https://doi.org/10.2307/1240203
Norra, S., Berner, Z. A., Agarwala, P., Wagner, F., Chandrasekharam, D., & Stüben, D. (2005). Impact of irrigation with as rich groundwater on soil and crops: a geochemical case study in West Bengal Delta Plain, India. Applied Geochemistry, 20(10), 1890-1906.
https://doi.org/10.1016/j.apgeochem.2005.04.019
Pal, T., Mukherjee, P. K., & Sengupta, S. (2002). Nature of arsenic pollutants in groundwater of Bengal basin-a case study from Baruipur area, West Bengal, India. Current Science, 82(5), 554-561.
Pfeiffer, L., & Lin, C.-Y. C. (2012). Groundwater pumping and spatial externalities in agriculture. Journal of Environmental Economics and Management, 64(1), 16-30.
https://doi.org/10.1016/j.jeem.2012.03.003
Polizzotto, M. L., Harvey, C. F., Li, G., Badruzzman, B., Ali, A., Newville, M., …& Fendorf, S. (2006). Solid-phases and desorption processes of arsenic within Bangladesh sediments. Chemical Geology, 228(1-3), 97-111.
https://doi.org/10.1016/j.chemgeo.2005.11.026
Polya, D., &Charlet, L. (2009). Rising arsenic risk?. Nature Geoscience, 2(6), 383-384.
https://doi.org/10.1038/ngeo537
Postma, D., Larsen, F., Hue, N. T. M., Duc, M. T., Viet, P. H., Nhan, P. Q., & Jessen, S. (2007). Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling. Geochimica et Cosmochimica Acta, 71(21), 5054-5071. https://doi.org/10.1016/j.gca.2007.08.020
Provencher, B., & Burt, O. (1993). The externalities associated with the common property exploitation of groundwater. Journal of Environmental Economics and Management, 24(2), 139-158. https://doi.org/10.1006/jeem.1993.1010
Punshon, T., Jackson, B. P., Meharg, A. A., Warczack, T., Scheckel, K., & Guerinot, M. L. (2017). Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Science of the Total Environment, 581, 209-220.
https://doi.org/10.1016/j.scitotenv.2016.12.111
Radloff, K. A., Zheng, Y., Michael, H. A., Stute, M., Bostick, B. C., Mihajlov, I., …& Schlosser, P. (2011). Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand. Nature Geoscience, 4(11), 793-798.
https://doi.org/10.1038/ngeo1283
Rains, M. C. (2003). The Role of Groundwater in Resource Conservation Efforts. Conservation Biology, 17(3), 933-934. https://doi.org/10.1046/j.1523-1739.2003.t01-1-01733.x
Raquel, S., Ferenc, S., Emery Jr, C., & Abraham, R. (2007). Application of game theory for a groundwater conflict in Mexico. Journal of Environmental Management, 84(4), 560-571.
https://doi.org/10.1016/j.jenvman.2006.07.011
Ravenscroft, P., Burgess, W. G., Ahmed, K. M., Burren, M., & Perrin, J. (2005). Arsenic in groundwater of the Bengal Basin, Bangladesh: Distribution, field relations, and hydrogeological setting. Hydrogeology Journal, 13(5-6), 727-751.
https://doi.org/10.1007/s10040-003-0314-0
Ripl, W. (1992). Management of water cycle: An approach to urban ecology. Water Quality Research Journal, 27(2), 221-238. https://doi.org/10.2166/wqrj.1992.016
Rodell, M., Velicogna, I. & Famiglietti, J. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460, 999–1002. https://doi.org/10.1038/nature08238
Roychowdhury, T., Tokunaga, H., Uchino, T., & Ando, M. (2005). Effect of arsenic-contaminated irrigation water on agricultural land soil and plants in West Bengal, India. Chemosphere, 58(6), 799-810.https://doi.org/10.1016/j.chemosphere.2004.08.098
Saha, G. C., Ali, M. A. (2006). Dynamics of arsenic in agricultural soils irrigated with arsenic contaminated groundwater in Bangladesh. Science of The Total Environment,379(2–3):180–189. https://doi.org/10.1016/j.scitotenv.2006.08.050
Sahu, P., &Sikdar, P. K. (2017). Effect of pumping on hydrologic system of a young satellite city in south Bengal Basin through numerical modelling: past, present and future. Sustainable Water Resources Management, 3(3), 321-341. https://doi.org/10.1007/s40899-017-0098-3
Sahu, P., Michael, H. A., Voss, C. I., & Sikdar, P. K. (2013). Impacts on groundwater recharge areas of megacity pumping: analysis of potential contamination of Kolkata, India, water supply. Hydrological Sciences Journal, 58(6), 1340-1360.
https://doi.org/10.1080/02626667.2013.813946
Salazar, R., Stone, J., Yakowitz, D., & Slack, D. (2005). Multicriteria analysis in an irrigation district in Mexico. Journal of Irrigation and Drainage Engineering, 131(6), 514-524. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:6(514)
Sarker, M. H., Akter, J., & Rahman, M. M. (2013). Century-scale dynamics of the Bengal delta and future development. Proceedings on International Conference on Water and Flood Management, Dhaka, Bangladesh, 91-104.
Schmidt, K. (2007).UCSC Hydrogeologist provides expert advice on Pajaro Valley's water supply. U.C. SANTACRUZ (UCSC). http://www.ucsc.edu/news_events/text.asp?pid=1759
Schmidt, K. D. (1977). Water quality variations for pumping wells. Groundwater, 15(2), 130-137. https://doi.org/10.1111/j.1745-6584.1977.tb03157.x
Scott, C. A., & Shah, T. (2004). Groundwater overdraft reduction through agricultural energy policy: insights from India and Mexico. International Journal of Water Resources Development, 20(2), 149-164.https://doi.org/10.1080/0790062042000206156
Sengupta, M. K., Mukherjee, A., Hossain, M. A., Ahamed, S., Rahman, M. M., Lodh, D., …& Saha, K. C. (2003). Groundwater arsenic contamination in the Ganga-Padma-Meghna-Brahmaputra plain of India and Bangladesh. Archives of Environmental Health: An International Journal, 58(11), 701-702. https://doi.org/10.3200/AEOH.58.11.701-702
Shah, T., Burke, J., Villholth, K. G., Angelica, M., Custodio, E., Daibes, F., … & Kendy, E. (2007). Groundwater: a global assessment of scale and significance. CGSpace: A Repository of Agricultural Research Ouput. https://hdl.handle.net/10568/36890
Shamsudduha, M., Chandler, R. E., Taylor, R. G., & Ahmed, K. M. (2009). Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta. Hydrol Earth Syst Sc, 13(12), 2373-2385. https://doi.org/10.5194/hess-13-2373-2009
Shamsudduha, M., Taylor, R. G., Ahmed, K. M., & Zahid, A. (2011). The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh. Hydrogeology Journal, 19(4), 901-916. https://doi.org/10.1007/s10040-011-0723-4
Sherif, M. M., & Singh, V. P. (2002). Effect of groundwater pumping on seawater intrusion in coastal aquifers. Journal of Agricultural and Marine Sciences [JAMS], 7(2), 61-67. https://doi.org/10.24200/10.24200/jams.vol26iss1pp1-12
Sikdar, P. K., & Chakraborty, S. (2008). Genesis of arsenic in groundwater of North Bengal Plain using PCA: a case study of English Bazar Block, Malda district, West Bengal, India. Hydrological Processes: An International Journal, 22(12), 1796-1809.
https://doi.org/10.1002/hyp.6742
Sikdar, P. K., Ghosal, U., & Chakraborty, S. (2018). Groundwater modeling to understand the impact of pumping in the deep Late Pleistocene aquifers of the western Bengal Basin on arsenic migration. Arabian Journal of Geosciences, 11(24), 795.
Sikdar, P. K., Sarkar, S. S., & Palchoudhury, S. (2001). Geochemical evolution of groundwater in the Quaternary aquifer of Calcutta and Howrah, India. Journal of Asian Earth Sciences, 19(5), 579-594. https://doi.org/10.1016/S1367-9120(00)00056-0
Sophocleous, M. (2000). From safe yield to sustainable development of water resources—the Kansas experience. Journal of Hydrology, 235(1-2), 27-43. https://doi.org/10.1016/S0022-1694(00)00263-8
Stute, M., Zheng, Y., Schlosser, P., Horneman, A., Dhar, R. K., Datta, S., … & Van Geen, A. (2007). Hydrological control of As concentrations in Bangladesh groundwater. Water Resources Research, 43(9). https://doi.org/10.1029/2005WR004499
Susheela, A. K. (1999). Fluorosis management programme in India. Current Science, 77(10), 1250-1256. http://repository.ias.ac.in/64544/1/64544.pdf
Swartz, C. H., Blute, N. K., Badruzzman, B., Ali, A., Brabander, D., Jay, J., … & Harvey, C. F. (2004). Mobility of arsenic in a Bangladesh aquifer: Inferences from geochemical profiles, leaching data, and mineralogical characterization. Geochimica et Cosmochimica Acta, 68(22), 4539-4557. https://doi.org/10.1016/j.gca.2004.04.020
Tiwari, V. M., Wahr, J., & Swenson, S. (2009). Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters, 36(18). https://doi.org/10.1029/2009GL039401
Tularam, G. A., & Krishna, M. (2009). LONG TERM CONSEQUENCES OF GROUNDWATER PUMPING IN AUSTRALIA: A REVIEW OF IMPACTS AROUND THE GLOBE. Journal of Applied Sciences in Environmental Sanitation, 4(2). https://research-repository.griffith.edu.au/bitstream/handle/10072/29294/58579_1.pdf;sequence=1
Tweed, S., Celle-Jeanton, H., Cabot, L., Huneau, F., De Montety, V., Nicolau, N., … & Leblanc, M. (2018). Impact of irrigated agriculture on groundwater resources in a temperate humid region. Science of the Total Environment, 613, 1302-1316.
https://doi.org/10.1016/j.scitotenv.2017.09.156
Ullah, S. M. (1998). Arsenic contamination of groundwater and irrigated soils of Bangladesh. In International conference on arsenic pollution of groundwater in Bangladesh: causes, effects and remedies, 1998. Dhaka: Dhaka Community Hospital.
https://ci.nii.ac.jp/naid/10029236000/
Van Geen, A., Zheng, Y., Cheng, Z., He, Y., Dhar, R. K., Garnier, J. M., … & Ahmed, K. M. (2006). Impact of irrigating rice paddies with groundwater containing arsenic in Bangladesh. Science of the Total Environment, 367(2-3), 769-777.
https://doi.org/10.1016/j.scitotenv.2006.01.030
Villholth, K. G. (2013). Groundwater irrigation for smallholders in Sub-Saharan Africa–a synthesis of current knowledge to guide sustainable outcomes. Water International, 38(4), 369-391. https://doi.org/10.1080/02508060.2013.821644
Wang, Y., Xiao, D., Li, Y., & Li, X. (2008). Soil salinity evolution and its relationship with dynamics of groundwater in the oasis of inland river basins: case study from the Fubei region of Xinjiang Province, China. Environmental Monitoring and Assessment, 140(1-3), 291-302. http://dx.doi.org/10.1007%2Fs10661-007-9867-z
Wemer, A. H., & Gleeson, T. (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nature Geoscience, 5, 853-861. https://doi.org/10.1038/ngeo1617
Werner, A. D., Ward, J. D., Morgan, L. K., Simmons, C. T., Robinson, N. I., & Teubner, M. D. (2012). Vulnerability indicators of sea water intrusion. Groundwater, 50(1), 48-58.
https://doi.org/10.1111/j.1745-6584.2011.00817.x
Whittemore, D. O., McGregor, K. M., &Marotz, G. A. (1989). Effects of variations in recharge on groundwater quality. Journal of Hydrology, 106(1-2), 131-145.
https://doi.org/10.1016/0022-1694(89)90170-4
Williams, P. N., Islam, M. R., Adomako, E. E., Raab, A., Hossain, S. A., Zhu, Y. G., … & Meharg, A. A. (2006). Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environmental Science &Technology, 40(16), 4903-4908. https://doi.org/10.1021/es060222i
Wilson, L. C., & Rouse, J. V. (1983). Variations in water quality during initial pumping of monitoring wells. Groundwater Monitoring & Remediation, 3(1), 103-109.
https://doi.org/10.1111/j.1745-6592.1983.tb00870.x
Wingo, A. (2001). Impacts of Groundwater Overdraft. Wingolog.
http://wingolog.org/writings/water/html/node35.html
Wright, J. F., & Berrie, A. D. (1987). Ecological effects of groundwater pumping and a natural drought on the upper reaches of a chalk stream. Regulated Rivers: Research & Management, 1(2), 145-160. https://doi.org/10.1002/rrr.3450010205
WWAP. (2003). Water for people water for life. World Water Development report. The United Nations. Sustainable Development UN.
https://sustainabledevelopment.un.org/content/documents/WWDR_english_129556e.pdf
Xie, X., Wang, Y., Li, J., Yu, Q., Wu, Y., Su, C., & Duan, M. (2015). Effect of irrigation on Fe (III)–SO42− redox cycling and arsenic mobilization in shallow groundwater from the Datong basin, China: evidence from hydrochemical monitoring and modeling. Journal of Hydrology, 523, 128-138. https://doi.org/10.1016/j.jhydrol.2015.01.035
Xie, X., Wang, Y., Su, C., Li, J., & Li, M. (2012).Influence of irrigation practices on arsenic mobilization: evidence from isotope composition and Cl/Br ratios in groundwater from Datong Basin, northern China. Journal of Hydrology, 424-425, 37-47.
https://doi.org/10.1016/j.jhydrol.2011.12.017
Xu, X. Y., McGrath, S. P., Meharg, A. A., & Zhao, F. J. (2008). Growing rice aerobically markedly decreases arsenic accumulation. Environmental Science &Technology, 42(15), 5574-5579. https://doi.org/10.1021/es800324u
Zektser, S., Loáiciga, H. A., & Wolf, J. T. (2005). Environmental impacts of groundwater overdraft: selected case studies in the southwestern United States. Environmental Geology, 47(3), 396-404. https://doi.org/10.1007/s00254-004-1164-3
Zheng, Y., Van Geen, A., Stute, M., Dhar, R., Mo, Z., Cheng, Z., …&Steckler, M. (2005). Geochemical and hydrogeological contrasts between shallow and deeper aquifers in two villages of Araihazar, Bangladesh: Implications for deeper aquifers as drinking water sources. Geochimica et Cosmochimica Acta, 69(22), 5203-5218.
Recommended Citation
Chatterjee, Rhitwik and Chowdhury, Mousumi
(2020).
IMPACT OF EXCESSIVE PUMPING ON GROUNDWATER QUALITY: THE ARSENIC PROBLEM OF THE GANGES–MEGHNA–BRAHMAPUTRA DELTA IN SOUTHEAST ASIA.
Journal of Environmental Science and Sustainable Development, 3(2), 371-401.
Available at: https://doi.org/10.7454/jessd.v3i2.1052