•  
  •  
 

Abstract

Cell-penetrating peptides (CPPs) are small peptides that can transfer other materials into a cellular compartment. In this research, we studied the effect of fusion of new CPPs to the N-terminal of enhanced Green Fluorescent Protein eGFP on the ability of the latter to fluoresce. Results showed that the recombinant protein CPPs-eGFP could be successfully expressed in Escherichia coli. In contrast to E. coli expressing wild-type eGFP, which could fluoresce under ultraviolet (UV) or visible light, E. coli expressing CPPs-eGFP lost their ability to fluoresce. PyMol, a molecular visualization system, revealed that fusion of the new CPPs to the N-terminal of eGFP alters interactions between chromophore-forming tripeptides and the adjacent amino acids of other tripeptides. Disrupting peptide interactions induced structural changes in eGFP that caused it to lose its fluorescence ability. We suggest performing computational analyses to predict the biological function of new fusion proteins prior to starting laboratory work.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.