We proposed a technique for improving the platinum (Pt) Schottky contact dark current of the AlN/GaN/AlN/Si(111) substrate. The AlN/GaN/AlN/ heterostructure sample was successfully grown on a silicon substrate by radio frequency molecular beam epitaxy. The high quality of the interlayer heterostructure sample was verified by transmission electron microscopy (TEM). From the TEM image, a good quality single interface layer with spacing less than 1 nm was detected. The strong significant peaks obtained by X-ray diffraction measurement indicated that the sample has a high structural quality for each grown layer. Dry oxidation and thermal annealing were used in conjunction to effectively reduce the leakage current of the Schottky contact of the AlN/GaN/AlN/Si(111) substrate. Energy-dispersive X-ray analysis revealed the presence of the element oxygen. Dry oxidation enhanced the surface roughness and surface-active area of the samples. Al2O3 contributed to the low leakage current of the Pt Schottky contact of the AlN/GaN/AlN/Si(111) substrate. The Al2O3 layer acted as an insulator layer, and retarded the current flow of devices.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.