A green and naturally biodegradable malonic acid synthesis of highly substituted dihydro-2-oxopyrrole derivatives has been accomplished via one-pot four-condensation of amines (aromatic or aliphatic), dialkyl acetylenedicarboxylate, and formaldehyde under mild reaction conditions. The notable advantages of the present procedure are a green, low cost, and efficient catalyst; operational simplicity; no need for chromatographic purification steps; short reaction times; and good to high yields.


[1] Borthwick A.D., Crame A.J., Ertl P.F., Exall A.M., Haley T.M., Hart G.J., Mason A.M., Pennell A.M., Singh O.M.P., Weingarten G.G., Woolven J.M. 2002. Design and synthesis of pyrrolidine-5,5-trans-lactams (5-oxohexahydropyrrolo[3,2-b]pyrroles) as novel mechanism-based inhibitors of human cytomegalovirus protease. 2. Potency and chirality. J. Med. Chem. 45(1): 1–18, https://doi.org/10.1021/j m0102203.

[2] Li W.R., Lin S.T., Hsu N.M., Chern M.S. 2002. Efficient total synthesis of pulchellalactam, a CD45 protein tyrosine phosphatase inhibitor. J. Org. Chem. 67(14): 4702–6, https://doi.org/10.1021/jo 010828j.

[3] Lampe J.W., Chou Y.L., Hanna R.G., Di-Meo S.V., Erhardt P.W., Hagedorn A.A., Ingebretsen W.R., Cantor E. 1993. (Imidazolylphenyl) pyrrol- 2- one inhibitors of cardiac cAMPphosphodiesterase. J. Med. Chem. 36(8): 1041–7, https://doi.org/10.1021/ j m00060a012.

[4] Shiozawa H, Takahashi S. Configurational studies on thiomarinol. J Antibiot (Tokyo). 1994;47(7):851–3. https://doi.org/10.7164/antibiotics. 47.851.

[5] Chen Y., Zeng D.X., Xie N., Dang Y.Z. 2005. Study on photochromism of diarylethenes with a 2, 5-dihydropyrrole bridging unit: a convenient preparation of 3, 4-diarylpyrroles from 3,4-diaryl-2,5-dihydropyrroles. J. Org. Chem. 70(13): 5001–5, https://doi.org/10.1021/jo050236r.

[6] Grunwald C., Rundfeldt C., Lankau H.J., Arnold T., Höfgen N., Dost R., Egerland U., Hofmann H.J., Unverferth K. 2006. Synthesis, pharmacology, and structure–activity relationships of novel imidazolones and Pyrrolones as modulators of GABAA receptors. J. Med. Chem. 49(6): 1855–66, https://doi.org/10.1021/jm0509400.

[7] Singh S.B., Goetz M.A., Jones E.T., Bills G.F., Giacobbe R.A., Herranz L., Stevens-Miles S., Williams D.L. 1995. Oteromycin: A novel antagonist of endothelin receptor. J. Org. Chem. 60(21): 7040–2, https://doi.org/10.1021/jo00126a071.

[8] Lv L., Zheng S., Cai X., Chen Z., Zhu Q., Liu S. 2013. Development of four-component synthesis of tetra- and pentasubstituted polyfunctional dihydropyrroles: free permutation and combination of aromatic and aliphatic amines. ACS Comb. Sci. 15(4): 183–92, https://doi.org/10.1021/co300148c.

[9] Sajadikhah S.S., Maghsoodlou M.T., Hazeri N. 2014. A simple and efficient approach to one-pot synthesis of mono- and bis-N-aryl-3-aminodihydropyrrol-2-one-4-carboxylates catalyzed by InCl3. Chin. Chem. Lett. 25(1): 58–60, https://doi.org/10.1 016/j.cclet.2013.10.010.

[10] Khan A.T., Ghosh A., Musawwer K.M. 2012. One-pot four-component domino reaction for the synthesis of substituted dihydro-2-oxypyrrole catalyzed by molecular iodine. Tetrahedron Lett. 53(21): 2622–6, https://doi.org/10.1016/j.tetlet. 2012.03.046.

[11] Zhu Q., Jiang H., Li J., Liu S., Xia C., Zhang M. 2009. Concise and versatile multicomponent synthesis of multisubstituted polyfunctional dihydropyrroles. J. Comb. Chem. 11(4): 685–96, https://doi.org/10.1021/cc900046f.

[12] Sajadikhah S.S., Hazeri N. 2014. Coupling of amines, dialkyl acetylenedicarboxylates and formaldehyde promoted by [n-Bu4N][HSO4]: an efficient synthesis of highly functionalized dihydro-2-oxopyrroles and bis-dihydro-2-oxopyrroles. Res. Chem. Intermed. 40(2): 737–48, https://doi.org/10.1 007/s11164-012-0998-7.

[13] Sajadikhah S.S., Hazeri N., Maghsoodlou M.T., Habibi-Khorassani S.M., Beigbabaei A., Willis A.C. 2013. Al(H2PO4)3 as an efficient and reusable catalyst for the multi-component synthesis of highly functionalized piperidines and dihydro-2-oxypyrroles. J. Iran Chem. Soc. 10(5): 863–71, https://doi.org/10.1007/s13738-013-0222-8.

[14] Sajadikhah S.S., Hazeri N., Maghsoodlou M.T., Habibi-Khorassani M.S., Khandan-Barani K. 2013. A one-pot multi-component synthesis of N-aryl-3-aminodihydropyrrol-2-one-4-carboxylates catalysed by oxalic acid dihydrate. J. Chem. Res. 37(1): 40–2, https://doi.org/10.3184/174751912X 13547952669204.

[15] Sajadikhah S.S., Maghsoodlou M.T., Hazeri N., Mohamadian-Souri S. 2016. ZrCl4 as an efficient catalyst for one-pot four-component synthesis of polysubstituted dihydropyrrol-2-ones. Res. Chem. Intermed. 42(4): 2805–14, https://doi.org/10.1007/ s11 164-015-2178-z.

[16] Zarei M., Sajadikhah S.S. 2016. Green and facile synthesis of dihydropyrrol-2-ones and highly substituted piperidines using ethylenediammonium diformate (EDDF) as a reusable catalyst. Res. Chem. Intermed. 42(9): 7005–16, https://doi.org/ 10.1007/s1 1164-016-2512-0.

[17] Salehi N., Fatameh M.B.B.F. 2017. Synthesis of highly substituted dihydro-2-oxopyrroles using Fe3O4@nano-cellulose–OPO3H as a novel bio-based magnetic nanocatalyst. RSC Adv. 7(48): 30303–9, https://doi.org/10.1039/C7RA04101B.

[18] Singh H., Rajput J.K. 2018. Chelation and calcination promoted preparation of perovskite-structured BiFeO3 nanoparticles: a novel magnetic catalyst for the synthesis of dihydro-2-oxypyrroles. J. Mater. Sci. 53(5): 3163–88, https://doi.org/10.1007/ s10853-017-1790-2.

[19] Mirjalilia B.B.F., Araqia R., Mohajeri S.A. 2019. A simple and green approach for the synthesis of substituted dihydro-2-oxypyrroles catalyzed by nano-Fe3O4@SiO2/SnCl4 superparamagnetic nanoparticles. Iran J. Catal. 9(1): 11–9.

[20] Gholami A., Khabnadideh S., Ghasemi Y., Mirjalili B.B.F., Shahmoradi R., Zamani L. 2017. TiCl4/nano-sawdust as an efficient biocatalyst for the synthesis of highly substituted Dihydro-2-oxopyrroles as antimicrobial agents. BJPR. 16(2): 1–14, https://doi.org/10.9734/BJPR/2017/33030.

[21] Bavadi M., Niknam K. 2018. Synthesis of functionalized dihydro-2-oxopyrroles using graphene oxide as heterogeneous catalyst. Mol. Divers. 22(3): 561–73, https://doi.org/10.1007/s11030-017-9809-9.

[22] Zhang J.N., Yang X.H., Guo W.J., Wang B., Zhang Z.H. 2017. Magnetic metal–organic framework CoFe2O4@SiO2@IRMOF-3 as an efficient catalyst for one-pot synthesis of functionalized dihydro-2-oxopyrroles. Synlett. 28(6): 734–40, https://doi.org/10.1055/s-0036-1588924.

[23] Mohamadpour F. 2019. Caffeine as a naturally green and biodegradable catalyst promoted convenient and expedient synthetic route for the synthesis of polysubstituted dihydro-2-oxypyrroles. Bull. Chem. Soc. Eth. 33(1): 149–58, https://doi.org/ 10.4314/b cse.v33i1.15.

[24] Mohamadpour F. 2019. Glutamic acid as green and bio-based α-amino acid catalyst promoted one-pot access to polyfunctionalized dihydro-2-oxypyrroles. J. Serb. Chem. Soc. 84(10): 1083–92, https://doi.org/10.2298/JSC180720006M.

[25] Mohamadpour F. 2019. ZnCl2-Catalyzed Four-Component Domino Reaction for One-Pot Eco-Safe and Convenient Synthesis of Polyfunctionalized Dihydro-2-oxopyrroles at Ambient Temperature. ChChT. 13(2): 157–62, https://doi.org/10.23939/ch cht13.02.157.

[26] Mohamadpour F. 2018. CrCl3·6H2O as an Environmentally Friendly and Efficient Catalyst for one-Pot, Synthesis of 2-oxo- and 2-thio-1,2,3,4-Tetrahydropyrimidines under Solvent-Free Conditions. Makara J. Sci. 22(4): 169–74, https://doi.org/10.7454/mss.v2 2i4.9865.

[27] Mohamadpour F. 2018. Development of an environment-friendly and solvent-free synthetic route for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones by La(NO3)3.6H2O as an efficient catalyst. Makara J Sci. 22(3): 142–8, https://doi.org/ 10.7454/m ss.v22i3.9899.

[28] Mohamadpour F. 2018. Zn(SO4)2.7H2O Catalyzed One-pot and Facile Synthesis of Highly Substituted Dihydro-2-oxopyrroles at Room Temperature. Makara J. Sci. 22(2): 82–8, https://doi.org/10.74 54/mss.v22i2.8792.

[29] Mohamadpour F., Lashkari M. 2018. Three-component reaction of β-keto esters, aromatic aldehydes and urea/thiourea promoted by caffeine, a green and natural, biodegradable catalyst for eco-safe Biginelli synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones derivatives under solvent-free conditions. J. Serb. Chem. Soc. 83(6): 673–84, https://doi.org/10.2298/JSC170712041M.

[30] Mohamadpour F. 2018. Green and Convenient one-Pot Access to Polyfunctionalized piperidine Scaffolds via glutamic acid Catalyzed Knoevenagel- Intramolecular [4+2] aza-Diels-Alder Imin-Based Multi-Component Reaction under Ambient temperature. Polycycl. Aromat.

[31] Mohamadpour F. 2018. Ascorbic acid as a natural green, highly efficient and economical catalyst promoted one-pot facile synthesis of 12-aryl-tetrahydrobenzo [a]xanthenes-11-ones, 1,8-dioxooctahydroxanthenes and 14-aryl-14H-dobenzo[a, j]xanthenes under conditions. UPB Sci. Bull. B. 80(2): 101–16.

[32] Duarte A.M., Caixeirinho D., Miguel M.G., Sustelo V., Nunes C., Fernandes M.M., Marreiros A. 2012. Organic acids concentration in citrus juice from conventional versus organic farming. Acta Hortic. 933(933): 601–6, https://doi.org/10.17660/ActaHor tic.2012.933.78.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.