•  
  •  
 

Abstract

We consider the correction of ground state energy of one-dimensional Gross-Pitaevskii equation by adding a gain-loss term as a time-dependent external potential. The interesting purpose of this term is that it can be used to explain the experimental results especially in the nonlinear fiber optics regarding the pulse propagation and collapse-revival of the condensate in the Bose-Einstein condensation. In the Bose-Einstein condensation itself, the function can represent that condensate can interact with the normal atomic cloud. Some analytical solutions have been obtained by choosing an ansatz solution of the wave function and its solution can be dark or bright soliton. Since the Gross-Pitaevskii equation can be treated as a macroscopic quantum oscillator, we can use time-dependent perturbation theory as in ordinary quantum mechanics to find the ground state energy correction if we assume other terms to be very small. In addition, time-dependent potential allows a transition from one energy level to others. In this case, we expand the solution of nonstationary one-dimensional wave function as a linear superposition of harmonic oscillator normalized eigen functions. To get the recursive formulas, we suggest an option to formulate the coefficients after inserting the initial condition which must be satisfied such as in quantum mechanics.

References

[1] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71 (1999) 463. [2] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269 (1995) 198. [3] K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75 (1995) 3969. [4] W. Ketterle, Rev. Mod. Phys. 74 (2002) 1131. [5] Y. Shin, C. Sanner, G.B. Jo, T.A. Pasquini, M. Saba, W. Ketterle, D.E. Pritchard, Phys. Rev. A 72 (2005) 021604, cond-mat/0506464. [6] Y.J. Wang, D.Z. Anderson, V.M. Bright, E.A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R.A. Saravanan, S.R. Segal, S. Wu, Phys. Rev. Lett. 94 (2005) 090405. [7] V.M. Perez-Garcia, H. Michinel, H. Herrero, Phys. Rev. A 57 (1998) 3837. [8] E.A. Ostrovskaya, Y.S. Kivshar, M. Lisak, B. Hall, F. Cattani, D. Anderson, Phys. Rev. A 61 (2000) 031601. [9] Y.S. Kivshar, T.J. Alexander, S.K. Turitsyn, Phys. Lett. A 278 (2001) 225. [10] R.A. Duine, H.T.C. Stoof, Phys. Rev. A 65 (2001) 013603. [11] U. Al Khawaja, H.T.C. Stoof, R.G. Hulet, K.E. Strecker, G.B. Partridge, Phys. Rev. Lett. 89 (2002) 200404. [12] Th. Busch, M. Kohl, T. Esslinger, K. Molmer, Phys. Rev. A 65 (2002) 043615. [13] V.I. Kruglov, A.C. Peacock, J.D. Harvey, Phys. Rev. Lett. 90 (2003) 113902. [14] R. Atre, P.K. Panigrahi, G.S. Agarwal, Phys. Rev. E 73 (2006) 056611. [15] T. Fukuyama, M. Morikawa, Prog. Theor. Phys. 115 (2006) 1047. [16] T. Fukuyama, M. Morikawa, T. Tatekawa, J. Cosmol. Astropart. Phys. 06 (2008) 033. [17] T. Fukuyama, M. Morikawa, Phys. Rev. D 80 (2009) 063520. [18] T. Harko, Phys. Rev. D 83 (2011) 123515.

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.