•  
  •  
 

Abstract

Maximal and Prime Ideals of Skew Polynomial Ring Over the Gauss Integers Domain. Let R be any ring with identity 1, σ be an automorphism of R and δ be a left σ-derivation. The skew polynomial ring over R in an indeterminate x is the set of polynomials anx n + an-1x n-1 + . . . + a0 where ai∈ R with multiplication rule xa = σ (a) x + δ(a) for all ai∈ R. In this paper, R is Gauss integers, i.e Z + Zi, where i 2 = -1, σ is the automorphism of R with σ(a + bi) = a - bi where a,b∈ Z, the ring of integers, and δ is the zero σ-derivation. We will show maximal and prime ideals of this skew polynomial ring.

References

[1] E. Zerz, IMA J. Math. Control Inform. 23 (2006) 113. [2] J.C. McConnell, J.C. Robson, Noncommutative Noetherian Ringss, John Wiley and Sons, Inc., New York, 1987, p.596. [3] K.R. Goodearl, J. Algebra 150/2 (1992) 324. [4] A.K. Amir, P. Astuti, I. Muchtadi-Alamsyah, JP Journal of Algebra Number Theory and Applications 16 (2010) 101. [5] A.K. Amir, P. Astuti, I. Muchtadi-Alamsyah, Prosiding Konferensi Nasional Matematika XIV, Palembang, Indonesia, 2008, p.69. [6] A.K. Amir, P. Astuti, I. Muchtadi-Alamsyah, Proceeding of the 3rd International Conference on Mathematics and Statistics (ICoMS-3), Bogor, Indonesia, 2008, p.169. [7] A.K. Amir, H. Marubayashi, Prosiding Konferensi Nasional Aljabar, Yogyakarta, Indonesia, 2009, p.243. [8] A.K. Amir, Prosiding Konferensi Nasional Matematika UNPAR, Bandung, Indonesia, 2009, p.AA-1.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.