•  
  •  
 

Abstract

The Extention of MFCC Technique from 1D to 2D as Feature Extractor for Speaker Identification System Using HMM. In this paper, we introduce an extension of Mel-Frequency Cepstrum Coefficients (1D-MFCC) methodology to bispectrum data, referred to as 2D-MFCC, for feature extraction. 2D-MFCC is based on 2D bispectrum data rather than 1D spectrum vector yielded by Fourier transform, so the filter in 1D-MFCC must be extend to 2D filter and using 2D cosine transform to get the mel-cepstrum coefficients from the filtered bispectrum values. Based on 2D-MFCC, we develop a speaker recognition system with Hidden Markov Model (HMM) as classifier. The experimental results show that the recognition rate is around 88%, 92% and 99% for 20, 40 and 60 data training, respectively

References

[1] T.D. Ganchev, Ph.D. Thesis. Wire Communications Laboratory, Department of Computer and Electrical Engineering, University of Patras, Greece, 2005. [2] A. Buono, Sistem Identifikasi Pembicara dengan MFCC sebagai Pengekstraksi Ciri dengan Hidden Markov Model sebagai Classifier, Laporan Teknis Penelitian, Lab. Kecerdasan Komputasional, Fakultas Ilmu Komputer Universitas Indonesia, 2008, tidak dipublikasikan. [3] C.L. Nikeas, A.P. Petropulu, Higher Order Spectra Analysis: A Nonlinear Signal Processing Framework, Prentice-Hall, Inc., New Jersey, 1993, p. 14. [4] M.I. Fanany, B. Kusumoputro, Thesis Magister, Ilmu Komputer, Fasilkom Universitas Indonesia, Depok, 1998. [5] N. Hidayat, B. Kusumoputro, Tesis Magister, Ilmu Komputer, Fasilkom Universitas Indonesia, Depok, 1999. [6] A. Triyanto, B. Kusumoputro, Thesis Magister, Ilmu Komputer, Fasilkom Universitas Indonesia, Depok, 2000. [7] C. Cornaz, U. Hunkeler, An Automatic Speaker Recognition System, Ecole Polytechnique, Federale De Lausanne, http://www.ifp.uiuc.edu/~ minhdo/teaching/speaker_recognition, 2005. [8] L.R. Rabiner, A Tutorial on Hidden Markov Model and Selected Applications in Speech Recognition, Proceeding IEEE 77/2 (1989) 257. [9] M. Nilsson, M. Ejnarsson, Master Thesis, Departement of Telecommunications and Signal Processing, Blekinge Institute of Technology, Ronneby, 2002

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.