Abstract
Penelitian ini bertujuan untuk menemukan solusi untuk mengatasi ketidakpastian dalam menentukan waktu yang tepat untuk bertransaksi dan berinvestasi dalam produk derivatif perdagangan valas. Metode yang digunakan adalah dengan menguji beberapa indikator teknikal, seperti Ichimoku, KSA, Fuzzy Logic, dan Expert Advisors, pada semua pasangan yang diuji berdasarkan sesi (Jepang, London, AS). Hasilnya menunjukkan bahwa penggunaan kombinasi indikator teknikal ini dapat memberikan keuntungan maksimum dan kerugian tertunda minimum untuk semua pasangan yang diuji, sehingga dapat membantu para pedagang untuk menentukan kondisi yang tepat untuk berdagang dan berinvestasi yang diperkuat dengan nilai Mean Square Error (MSE) sebesar 5% dan Mean Absolute Percentage Error (MAPE) sebesar 1,5%. Penelitian ini memberikan solusi untuk mengurangi risiko dan meningkatkan potensi keuntungan bagi pedagang produk derivatif valuta asing
References
Ahmad, N., Darwish, N. I., Alim, A., Rashid, M. Z. A., & Rashid, M. H. (2021). A Fuzzy Logic-Based Home Energy Management System for Domestic Sector. Energies, 14(5), 1273. Atsalakis, G. S., & Valavanis, K. P. (2009). Forecasting stock market short-term trends using a neuro-fuzzy based methodology. Expert Systems with Applications, 36(10), 10696-10707. Azadeh, A., Asadzadeh, S. M., Saberi, M., Nadimi, V., Tajvidi, A., & Sheikalishahi, M. (2013). A neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behavior analysis: The cases of Bahrain, Saudi Arabia, Syria, and UAE. Applied Energy, 88, 3850-3859. Chen, Y.-S., Cheng, C.-H., & Tsai, W.-L. (2014). Modeling fitting-function-based fuzzy time-series patterns for evolving stock index forecasting. Applied Intelligence, 41(2), 327–347. Chen, S.-M., Chen, C. D., (2013). TAIEX Forecasting based on fuzzy time-series and fuzzy variation groups, IEEE Transactions on Fuzzy Systems, 19(1), 1–12. Chen, S.-M., Chou, H. P., Sheu, T.-W., & Liu, H.-C. (2012). TAIEX forecasting using fuzzy time-series and automatically generated weights of multiple factors. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 42(6), 1485–1495. Chen, S.-M., Manalu, G. M. T., Pan, J.-S., & Liu, H.-C. (2013). Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization techniques. IEEE Transactions on Cybernetics, 43(4), 1102–1117. Cheng, S.-H., Chen, S.-M., & Jian, W.-S. (2016). Fuzzy time-series forecasting based on fuzzy logical relationships and similarity measures. Information Sciences, 327, 272–287. Jang, J.-S. R., & Sun, C.-T. (2017). Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Pearson Education. Yolcu, U., Aladag, C. H., Egrioglu, E., & Uslu, V. R. (2013). Time-series forecasting with a novel fuzzy time-series approach: An example for Istanbul stock market. Journal of Statistical Computation and Simulation, 83(4), 599–612. Zadeh, L. A. (2019). Fuzzy sets and systems: From theory to practice. Information Sciences, 497, 4-20. Zhao, D., Liu, Y., Ma, L., & Zhang, Y. (2020). Adaptive fuzzy identification for nonlinear systems using kernel method. Neurocomputing, 416, 142-154.
Recommended Citation
Saputra, Yulius Eka Agung
(2023)
"ANALISIS TREN SAHAM CFD, FOREX DAN KRIPTO MENGGUNAKAN PENDEKATAN FUZZY,"
Jurnal Vokasi Indonesia: Vol. 11:
No.
1, Article 1.
DOI: 10.7454/jvi.v11i1.1034
Available at:
https://scholarhub.ui.ac.id/jvi/vol11/iss1/1
Included in
Accounting Commons, Arts Management Commons, Business Administration, Management, and Operations Commons, Business Analytics Commons, Educational Administration and Supervision Commons, Insurance Commons, Tourism and Travel Commons