Article Classification

Environmental Science


Indonesia has abundant mineral resources used as natural adsorbent materials for the absorption of heavy metal. Among these are natural zeolites, clay, and ashes. These natural materials showed high performance adsorption capacity with respects to their low cost and high availability. Several research reports had been published for studying the performance of the natural materials as adsorbent of several heavy metals i.e., Hg, Pb, Fe, Cd, Cr, Zn, Ni, and Cu by examining the effect of various factors, including pH, contact time, initial concentration, temperature, and dosage. Furthermore, to determine the adsorption rate, mechanism, and efficiency of natural materials in the removal of toxic metals from aqueous solution, investigations have been made of the parameters of the adsorption isotherms, kinetics, and thermodynamics. The main objective of this article is to provide an overview of the use of some natural materials found in Indonesia, including clay, natural zeolite, fly ash, and bottom ash for use as adsorbents for several types of heavy metals in aqueous solution. These types of natural adsorbents were chosen as their high availability in natural or disposal product and their high performance regarding their heavy metal uptakes. This article review is important in order to capture the current research reported the use Indonesia natural minerals as adsorbent of heavy metals and providing its future research opportunities. Thus, we also emphasize the prospect materials and the future research opportunities for the use of Indonesia's local natural minerals with the utilization of non-conventional modification techniques that can provide added value and improve the performance of these natural materials in removing heavy-metal waste from aqueous solutions.


Alfanaar, R., Yuniati, Y., & Rismiarti, Z. (2017). Studi Kinetika dan Isoterm Adsorpsi Besi(Iii) pada Zeolit Alam dengan Bantuan Gelombang Sonikasi. Educhemia: Jurnal Kimia dan Pendidikan, 2(1), 63-72.

Anggara, P., Wahyuni, S., & Prasetya, A. (2013). Optimalisasi Zeolit Alam Wonosari dengan Proses Aktivasi secara Fisis dan Kimia. Indonesian Journal of Chemical Science, 2(1), 73-77.

Anirudhan, T., & Suchithra, P. (2010). Equilibrium, kinetic, and thermodynamic modeling for the adsorption of heavy metals onto chemically modified hydrotalcite. Indian Journal of Chemical Technology, 17, 247-259.

Antaria, S., Daud, F., & Nenny. (2018). Utilization of natural zeolite South Sulawesi as filtration material for reducing heavy metal nickel (Ni). International Journal of Civil Engineering and Technology (IJCIET), 9(9), 1876-1885.

Ariffin, N., Abdullah, M. M. A. B., Zainal, M. R. R. M. A., Murshed, M. F., Zain, -H., Faris, A. M., Bayuaji, R. (2017). Review on adsorption of heavy metal in wastewater by using geopolymer. MATEC Web of Conference, 97, 01023

Badillo-Almaraz, V., Trocellier, P., & Davila-Rangel, I. (2003). Adsorption of aqueous Zn(II) species on synthetic zeolites. Nuclear Instruments and Methods in Physics Research Section B, 210, 424-428.

Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361-377.

Barer, R. M. (1987). Zeolites and clay minerals as sorbent and molecular sieves. New York: Academic Press.

Breck, D. W. (1964). Crystalline molecular sieves. Journal of Chemical Education, 41(12), 678.

Darmayanti, L., Notodarmodjo, S., & Damanhuri, E. (2017). Removal of copper (II) ions in aqueous solutions by sorption onto fly ash. Journal of Engineering Science and Technology, 49(4).

Darmayanti, L., Notodarmodjo, S., Damanhuri, E., & Mukti, R. R. (2018). Removal of copper (II) ions in aqueous solutions by sorption onto alkali activated fly ash. MATEC Web of Conferences, 147(04007).

Darmayanti, L., Notodarmodjo, S., Damanhuri, E., Kadja, Grandprix T. M., Mukti, Rino R. (2019). Preparation of alkali-activated fly ash-based geopolymer and their application in the adsorption of copper (II) and zinc (II) ions. MATEC Web of Conferences, 276:06012.

Darmayanti, L., Kadja, G. T. M., Notodarmodjo, S., Damanhuri, E., & Mukti, Rino R. (2019). Structural alteration within fly ash-based geopolymers governing the adsorption of Cu2+ from aqueous environment: Effect of alkali activation. Journal of Hazardous Materials, 377, 305-314.

Dessalew, D. A., Sanjeev, K. S., & Dejene, A. T. (2012). Assessment of the adsorption capacity of fired clay soils from Jimma (Ethiopia) for the removal of Cr(VI) from aqueous solution. Universal Journal of Environmental Research and Technology, 2(5), 411-420.

El-Bahy, S., & El-Bahy, Z. (2016). Synthesis and characterization of polyamidoxime chelating resin for adsorption of Cu(II), Mn(II) and Ni(II) by batch and column study. Journal of Environmental Chemical Engineering, 4, 276-286.

Fatimah, I. (2018). Preparation, characterization and physicochemical study of 3- amino propyl trimethoxy silane-modified kaolinite for Pb(II) adsorption. 30, 250-257.

Gandy, J. J., Laurens, I., & Snyman, J. R. (2015). Potentiated clinoptilolite reduces signs and symptoms associated with veisalgia. Clin Exp Gastroenterol, 8, 271-277.

H, E. (1999). Treatment of metal-contaminated wastes: why select a biological process? Trends Biotechnology, 17, 462-465.

Hegazi, H. A. (2013). Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. Housing and Building National Research Center, 9, 276-282.

Henry, M., Maley, S., & Mehta, K. (2013). Designing a low-cost ceramic water filter press. International Journal for Service Learning in Engineering, Humanitarian Engineering and Social Entrepreneurship, 8(1), 62-77.

Inglezakis, V., Loizidou, M., & Grigoropoulou, H. (2003). Ion exchange of Pb2+, Cu2+, Fe3+ and Cr3+ on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake. Journal of Colloid Interface Science, 261, 46-54.

Iryani, A., & Hartanto, D. (2018, September). Textile Dyes Removal by ZSM-5 from Bangka Kaolin. IOP Publishing in Journal of Physics: Conference Series, 1095(1), 1-6.

João, C., Nuno, C., Tiago, M., Luis, S., Ana, F. J., & Mafalda, O. (2019). Stabilisation of high-sulphide tailings with alkali activated fly ash–mechanical performance. MATEC Web of Conferences, 274, 1-6.

Kobielska, P. A., Howarth, A. J., Farha, O. K., & Nayak, S. (2018). Metal–organic frameworks for heavy metal removal from water. Coordination Chemistry Reviews, 358, 92-107.

Koswojo, R., Utomo, R., Ju, Y., Ayucitra, A., Soetaredjo, F., Sunarso, J., & Ismadji, S. (2010). Acid green 25 removal from wastewater by organo-bentonite from Pacitan. Applied Clay Science, 48, 81-86.

Kuncoro, E. P., & Fahmi, M. Z. (2014). Kinetics of Hg and Pb removal in aqueous solution using coal fly ash adsorbent. IPTEK, The Journal of Technology and Science, 25(3), 67.

Kuncoro, E. P., & Fahmi, M. Z. (2013). Removal of Hg and Pb in aqueous solution using coal fly ash adsorbent. Procedia Earth and Planetary Science, 6, 377-382

Kusdarto. (2008). Potensi Zeolite di Indonesia. Jurnal Zeolite Indonesia, 7(2), 78-87.

Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals. In Heavy Metals (pp. 117-121). London: Intechopen.

Mudasir, M., Karelius, K., Aprilita, N. H., & Wahyuni, E. T. (2016). Adsorption of Mercury (II) on Dithizone-immobilized natural zeolite. Journal of Environmental Chemical Engineering, 4, 1839-1849.

Nathaniel, E., Kurniawan, A., Soeteredjo, F. E., & Ismadji, S. (2011). Organo-bentonite for the adsorption of Pb(II) from aqueous solution: Temperature dependent parameters of several adsorption equations. Desalination and Water Treatment, 36, 280-288.

Nejadshafiee, V., & Islami, M. R. (2019). Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent. Materials Science and Engineering: C, 101, 42-52.

Neolaka, Y. A., Supriyanto, G., & Kusuma., H. S. (2018). Adsorption performance of Cr(VI)-imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite. Journal of Environmental Chemical Engineering, 6, 3436-3443 .

P. Vareda, J., J. M. Valente, A., & Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 246, 101-118.

Perera, S. D., & Trautman, L. R. (2006). Geopolymers with the potential for use as refractory castables. Azojomo, 2, 132-140.

Pich, B., Warmada, I. W., Hendrayana, H., & Yoneda, T. (2010). Modified natural zeolite and bentonite as adsorbents of heavy metal ions from polluted groundwater in Yogyakarta urban area, Indonesia. Journal of SE Asian Appl. Geol., 2(1), 12-19.

Pranoto, Inayati, & Firmansyah, F. (2018). Effectiveness study of drinking water treatment using clays/andisol adsorbent in lariat heavy metal cadmium (Cd) and bacterial pathogens. IOP Conference Series: Materials Science and Engineering, 349(012047).

Pratomo, S. W., Mahatmanti, F. W., & Sulistyaningsih, T. (2017). Pemanfaatan zeolite alam teraktivasi H3PO4 sebagai adsorben ion logam Cd(II) dalam Larutan. Indonesian Journal of Chemical Science, 6(2).

Priadi, C. R., Anita, Sari, P. N., & Moersidik, S. S. (2014). Adsorpsi logam seng dan timbal pada limbah cair industri keramik oleh limbah tanah liat. Reaktor, 15(1), 10-19.

Puspitasari, T., Kadja, G. T. M., Radiman, C. L., Darwis, D., & Mukti, R. R. (2018). Two-step preparation of amidoxime-functionalized natural zeolites hybrids for the removal of Pb 2+ ions in aqueous environment. Materials Chemistry and Physics, 216, 197-205.

Puspitasari, Tita; Ilmi, Moh. Mualliful; Nurdini, Nadya; Mukti, Rino R.; Radiman, Cynthia L.; Darwis, Darmawan; Kadja, Grandprix T. M. (2019). The physicochemical characteristics of natural zeolites governing the adsorption of Pb2+ from aqueous environment. Key Engineering Materials, 811, 92-98.

Renni, C. P., Mahatmantil, F. W., & Widiarti, N. (2018). Pemanfaatan zeolit alam teraktivasi sebagai adsorben ion logam Fe(III) dan Cr(VI). Indonesian Journal of Chemical Science, 7(1).

Setiaka, J., Ulfin, I., & Widiastuti, N. (2011). Adsorpsi Ion Logam Cu(Ii) dalam Larutan pada Abu Dasar Batubara Menggunakan Metode Kolom. Prosiding Skripsi Semester Genap 2010/2011.

Siswoyo, Firachmatika, A., & Kautsar, R. B. (2016). Removal of Cu (II) in water by using adsorbent based on volcanic ash of Mount Kelud in Indonsia. International Journal of Environemntal Science and Development, 7(9).

Soetaredjo, F. E., Ju, Y.-H., Ismadji, S., & Ayucitra, A. (2017). Removal of Cu(II) and Pb(II) from wastewater using biochar-clay nanocomposite. Desalination and Water Treatment, 82, 188-200.

Sprynsky, M., Buszewski, B., Terzyk, A., & J. Namiesnik. (2006). Study of selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+ and Cd2+) adsorption on clinoptilolite. Journal Colloid Interface Science, 304, 21-28.

Tong, D., Zhou, C., Lu, Y., Yu, H., Zhang, G., & Yu, W. (2011). Adsorption of acid red G dye on octadecyl trimethylammonium montmorillonite. Journal of Environmental Management, 92, 407-418.

Wang, S., & Peng, Y. (2009). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 159, 11-24.

Wardani, R. K., Darmokoesoemo, H., & Purwaningsih, A. (2018). Pemanfaatan abu bawah batu bara teraktivasi seabagai adsroben ion logam Cd2+. Journal of Pharmacy and Science, 3(1).

Weaver, C., & Pollard, L. (Eds.). (1973). The Chemistry of Clay Minerals. Netherland: Elsevier Science.

Weng, C.-H., & Huang, C. C.-p. (2004). Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloids and Surfaces A Physicochemical and Engineering Aspects, 247(1-3), 137-143.

Yulianis, Mahidin, & Muhammad, S. (2017). Adsorption of copper ions using activated nano natural zeolite. 7(1), 61-69.

Zainith, A., Kusdarto, A.L, N., & Sugeng. (2002). Hasil Kegiatan Inventarisasi dan Evaluasi Sub Tolok Ukur Mineral Non Logam Tahun Anggaran 2002. Kolokium Direktorat Inventarisasi Sumber Daya Mineral.

Zhu, W., Wang, J., Wu, D., Li, X., Luo, Y., Han, C., Ma, W., He, S. (2017). Investigating the heavy metal adsorption of mesoporous silica materials prepared by microwave synthesis. Nanoscale Research Letters, 12(1), 323-332.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.