Abstract
A multilevel lockdown was introduced during the COVID-19 pandemic worldwide. This new experience, however, received mixed responses from the public in different countries including India. A quantitative self-report, the Pro-Lockdown Compliance Scale (Pro-LCS), was developed to help 1) the Government and enforcing agents understand the compliance level of the public and 2) researchers investigate the antecedent factors of the compliance of the lockdown measures. The initial 10 items were administered to 309 male residents in Kerala via an online survey. The responses were randomly divided and submitted to exploratory and confirmatory factor analyses. Both analyses consistently support that the scale is best represented by a 5-item unidimensional model. Moreover, the Pro-LBS also demonstrated adequate internal consistency. The preliminary findings suggest that the scale is a brief and useful tool to examine the compliance level of the lockdown measures.
Bahasa Abstract
Lockdown bertingkat diberlakukan selama pandemi COVID-19 di seluruh dunia. Namun, pengalaman baru ini mendapat tanggapan beragam dari masyarakat di berbagai negara termasuk India. Laporan mandiri kuantitatif, Skala Kepatuhan Pro-Lockdown (Pro-LCS), dikembangkan untuk membantu 1) Pemerintah dan aparat penegak hukum memahami tingkat kepatuhan publik dan 2) peneliti menyelidiki faktor-faktor yang mendahului kepatuhan terhadap penguncian Pengukuran. 10 item awal diberikan kepada 309 penduduk laki-laki di Kerala melalui survei online. Tanggapan secara acak dibagi dan diserahkan ke analisis faktor eksplorasi dan konfirmasi. Kedua analisis secara konsisten mendukung bahwa skala paling baik diwakili oleh model unidimensional 5 item. Selain itu, Pro-LBS juga menunjukkan konsistensi internal yang memadai. Temuan awal menunjukkan bahwa skala adalah alat yang singkat dan berguna untuk memeriksa tingkat kepatuhan tindakan penguncian.
References
An, L., Hawley, S., Van Horn, M. L., Baconb, E., Yangb, P., & Resnicowa, K. (2021). Development of a coronavirus social distance attitudes scale. Patient Education Counselling, 104(6), 1451-1459. https://doi.org/10.1016/j.pec.2020.11.027
Andone, D. (April 17, 2020). Protests Are Popping Up Across the US over Stay-at-Home Restrictions. CNN. Archived from the original on May 2, 2020. Retrieved May 3, 2020.
BBC News. (2020). "Coronavirus: Anti-Lockdown Protests Grow Across US". BBC News. 17 April 2020. Archived from the original on 17 April 2020. Retrieved 17 April 2020.
Bellato, A. (2020). Psychological factors underlying adherence to COVID-19 regulations: A commentary on how to promote compliance through mass media and limit the risk of a second wave. Social Sciences & Humanities Open, 2(1), https://doi.org/10.1016/j.ssaho.2020.100062
BI India Bureau (2020, March 26). What is lockdown and what to expect from the lockdown? Available at https://www.businessinsider.in/india/news/what-is-lockdown-and-what-to-expect-from-the-lockdown/articleshow/74759615.cms (last accessed on March 26, 2020).
Blendon, R. J., DesRoches, C. M., Cetron, M. S., Benson, J. M., Meinhardt, T., & Pollard, W. (2006). Attitudes toward the use of quarantine in a public health emergency in four countries. Health affairs (Project Hope), 25(2), 15–25. https://doi.org/10.1377/hlthaff.25.w15
Clark, C., Davila, A., Regis, M., & Kraus, S. (2020). Predictors of COVID-19 voluntary compliance behaviors: An international investigation. Global transitions, 2, 76-82. https://doi.org/10.1016/j.glt.2020.06.003
Clark, L. A. & Watson, D. (1995). Constructing validity: Basic issues in objective scale development. Psychological Assessment, 7, 309-319.
De Vaus, D. (2004). Surveys in social research (5th ed.). London: Routledge.
DiGiovanni, C., Conley, J., Chiu, D., & Zaborski, J. (2004) Factors influencing compliance with quarantine in Toronto during the 2003 SARS outbreak. Biosecurity and Bioterrorism, 2(4), 265–272. https://doi.org/10.1089/bsp.2004.2.265
Hale, T., Angrist, N., Kira, B., Petherick, A., Phillips, T., & Webster, S. (2020). Variation in Government Responses to COVID-19 (Working Paper, BSG-WP-2020/032). Blavatnik School of Government. https://www.bsg.ox.ac.uk/sites/default/files/2020-04/BSG-WP-2020-032-v5.0.pdf
Hills, S. & Eraso, Y. (2021). Factors associated with non-adherence to social distancing rules during the COVID-19 pandemic: a logistic regression analysis. BMC Public Health, 21 (352). https://doi.org/10.1186/s12889-021-10379-7
India Today Webdesk. (2021). Coronavirus: Govt blames the spike in cases on lack of public cooperation. Available at https://www.indiatoday.in/india/story/coronavirus-cases-deaths-testing-govt-presser-march-31-1661796-2020-03-31 (Accessed March 31, 2021).
Jalal, J., & Sen, A. (2020). Containing a pandemic with public actions and public trust: the Kerala story. Indian Economics Review. 55, 105-124. https://doi.org/10.1007/s41775-020-00087-1
JASP Team (2022). JASP (Version 0.16.2) [Computer software].
Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y. (2022). semTools: Useful tools for structural equation modelling. R package version 0.5-6. Available at https://CRAN.R-project.org/package=semTools
Kissler, S., Tedijanto, C., Lipsitch, M., & Grad, Y. H. (2020). Social distancing strategies for curbing the COVID-19 epidemic. MedRxiv, 2020-03. https://www.medrxiv.org/content/10.1101/2020.03.22.20041079v1.full.pdf
Markel, H. (1995). Knocking out the cholera: cholera, class and quarantine in New York City, 1892. Bulletin of the History of Medicine. 69(3), 420–457.
McColl, K., Debin, M., Souty, C., Guerrisi, C., Turbelin, C., Falchi, A., Bonmarin, I., Paolotti, D., Obi, C., Duggan, J., Moreno, Y., Wisniak, A., Flahault, A., Blanchon, T., Colizza, V., & Raude, J. (2021). Are People Optimistically Biased about the Risk of COVID-19 Infection? Lessons from the First Wave of the Pandemic in Europe. International journal of environmental research and public health, 19(1), 436. https://doi.org/10.3390/ijerph19010436
Lerner, R. M., Wang, J., Champine, R. B., Warren, D. J., & Erickson, K. (2014). Development of civic engagement: Theoretical and methodological issues. International Journal of Developmental Science, 8(3-4), 69-79. https://doi.org/10.3233/DEV-14130
Lonergan, M., & Chalmers, J. D. (2020). Estimates of the ongoing need for social distancing and control measures post-“lockdown” from trajectories of COVID-19 cases and mortality. European Respiratory Journal, 6(1) 2001483. https://doi.org/10.1183/13993003.01483-2020
Outlook News (2021). Public non-cooperation major reason for high COVID-19 fatality. Outlook News. Available at https://www.outlookindia.com/newsscroll/public-noncooperation-major-reason-for-high-covid19-fatality/1937760 (last accessed September 17, 2021.)
Porto, E. D., Naticchioni, P., & Scrutinio, V. (2022). Lockdown, essential sectors, and Covid-19: Lessons from Italy. Journal of Health Economics, 81, 102572. https://doi.org/10.1016/j.jhealeco.2021.102572.
R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Risse, G. (1992). A long pull, a strong pull, and all together: San Francisco and Bubonic Plague, 1907–1908. Bulletin of the History of Medicine. 66(2), 260–286.
Rosseel, Y. (2012). Lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. https://doi.org/10.18637/jss.v048.i02
Sandford, A. & Euronews. (2020, April 2). Coronavirus: Half of humanity now on lockdown as 90 countries call for confinement. Available at https://www.euronews.com/2020/04/02/coronavirus-in-europe-spain-s-death-toll-hits-10-000-after-record-950-new-deaths-in-24-hou (last accessed on April 26, 2021).
The Lancet. (2020, April 25). India under COVID-19 lockdown. Editorial, 395 (10233), P1315. https://doi.org/10.1016/S0140-6736(20)30938-7.
Weinstein, N. D. (1987). Unrealistic optimism about susceptibility to health problems: Conclusions from a community-wide sample. Journal of Behavioral Medicine, 10(5), 481–500. https://doi.org/10.1007/BF00846146
Recommended Citation
Joy, L., Ramachandran, M., Fenn, J., & Tan, C. (2023). Factor Analysis and Reliability of the Pro-Lockdown Compliance Scale. Makara Human Behavior Studies in Asia, 27(1), 37-43. https://doi.org/10.7454/hubs.asia.1011122