Abstract

Demam Berdarah Dengue (DBD) adalah penyakit berbasis vektor yang menjadi masalah kesehatan masyarakat di negara-negara tropis termasuk Indonesia. Penelitian ini bertujuan memprediksi kejadian DBD berdasarkan faktor iklim yang meliputi curah hujan, kelembaban, suhu udara dan lama penyinaran matahari serta model pengendalian. Desain penelitian adalah studi ekologi time series dengan data sekunder dari dinas kesehatan kota Surabaya meliputi kejadian DBD dan angka bebas jentik (ABJ) serta data iklim curah hujan, kelembaban, suhu udara dan lama penyinaran matahari yang didapatkan dari Badan Meteorologi dan Geofisika Badan (BMKG) stasiun perak Surabaya. Penelitian tersebut menemukan kelembaban berkorelasi dengan angka bebas jentik, tetapi ABJ tidak berkorelasi dengan jumlah kejadian DBD. Model pengendalian DBD dirediksi berdasarkan korelasi faktor iklim dan kejadian DBD, pengendalian sumber penyakit, pengendalian media transmisi dan paparan pada masyarakat. Model pengendalian DBD dapat digunakan untuk tindakan kewaspadaan dini dengan melakukan pengendalian DBD pada periode bulan Januari hingga Juni. Pada bulan tersebut, musim hujan akan berakhir, tetapi menyisakan genangan air sebagai tempat perindukan nyamuk Aedes aegypti dan peningkatan suhu udara yang meningkatkan penularan DBD.

Dengue Hemorrhagic Fever (DHF) is a vector-based diseases are a public health problem in many tropical countries, including Indonesia. This study aims to predict the incidence of dengue by climatic factors (rainfall, humidity, air temperature and solar irradiation time) and Its control model. The study design was ecological time series study, using secondary data for 3 Years i.e. 2009, 2010 and 2011. The data was the incidence of dengue larva free number from Surabaya city health department as well as climate da-ta obtained from the Meteorology and Geophysics Agency, Perak Station Surabaya. The results showed that the humidity effect on larva-free number (ABJ), but the larvae-free number had no effect on the incidence of DHF, but the larvae-free number no significant effect on the incidence of dengue. Model predictive control of DHF is based on the correlation between climate and dengue incidence, control of diseases, control of transmission. Models can be used to control dengue early warning measures to control dengue in the month of January until June period in which the month before the rainy season ends, but leaves puddles as breeding places of Aedes aegypti as well as rising the temperature increases lead to transmission of dengue fever.

References

1. Khin MM, Than KA. Transovarial transmission of dengue-2 virus by Aedes aegypti nature. American Journal and Tropical Medicine and Hygiene. 2003: 32: 590-4.

2. World Health Organization. Prevention and control of dengue and dengue haemorrhagic fever. No. 29. New Delhi: WHO Regional Publication SEARO; 2003.

3. Kementerian Kesehatan Republik Indonesia. Pencegahan dan pemberantasan Demam Berdarah Dengue di Indonesia. Jakarta: Direktorat Jenderal Pengendalian Penyakit dan Penyehatan Lingkungan Kementerian Kesehatan Republik Indonesia; 2005.

4. Foley DH, Klein TA, Kim HC, Wilkerson RC, Rueda LM. The geographic distribution and ecology of potential Aedes sp in Republic of Korea. Journal of Entomology. 2008; 46: 680-92.

5. Halide H, Ridd P. A predictive model for dengue hemorrhagic fever epidemics. International Journal Environmental Health Research. 2008:18 (4); 253-65.

6. Achmadi UF. Penyakit berbasis wilayah. Jakarta: Universitas Indonesia (UI Press); 2008.

7. Bangs MJ, Larasati RP, Corwin AL, Wuryadi S. Climatic factors associated with epidemic dengue in Palembang, Indonesia, implications of short-term metereologica events on virus transmission. Southeast Asian Journal Tropical Medicine and Public Health. 2007; 37(6): 1103-16.

8. Dinas Kesehatan Kota Surabaya. Profil kesehatan kota Surabaya. Surabaya: Dinas Kesehatan Kota Surabaya; 2010.

9. Dinas Kesehatan Kota Surabaya. Laporan tahunan kegiatan surveilans. Surabaya: Dinas Kesehatan Kota Surabaya; 2012.

10. Craven RB, Eliason DA, Francy DB. Importation of Aedes albopictus and other exotic species into the United States in used tires from Asia. Journal America Mosquitoes Controll Association. 2008; 4: 138-42.

11. Direktorat Jenderal Pengendalian Penyakit dan Penyehatan Lingkungan (P2PL)Kementerian Kesehatan Republik Indonesia. Profil pengendalian penyakit dan penyehatan lingkungan tahun 2009. Jakarta: P2PL Kementerian Kesehatan Republik Indonesia; 2005.

12. Kuntoro. Dasar filosofi dan meteodologi penelitian. Surabaya: Pustaka Melati; 2009.

13. Angel B, Joshi V. Distribution and sensasional of vertically transmitted dengue virus in Aedes mosquitoes in Arid and Arid Semi-Arid Areas of Rajsthan. Journal of Vector Borne Diseases. 2008; 45(3): 56-9.

14. Chakravarti A, Kumaria R. Eco-epidemiological analysis of dengue infection during an outbreak of dengue fever. BioMed Central [serial on the internet]. 2005: 2(1): 1-7 [cited 2012 Dec 3]. Available from: http://www virology/J.com/content/2/1/32.

15. Schwartz E, Weld LH, Wilder-Smith A, von Sonnenburg F, Keystone JS, Kain KC, et al. Seasonality, annual trends, and characteristics of dengue in ill returned travelers, 1997–2006. Emerg Infect Dis [serial on the Internet]. 2008; 14(7) [cited 2012 Feb 8]. Available from: http://wwwnc.cdc.gov/eid/article/14/7/07-1412.htm

16. Badan Metereologi, Klimatologi dan Geofisika. Pemantauan temperatur, kelembaban, curah hujan, dan hari hujan. Klimatologi, Surabaya: Stasiun Perak; 2012.

17. Gubler DJ, Reiter P, Ebi KL, Yap W, Nasci R, Partz JA. Climate variability and change in the United States: potential impacts on vector and rodent-borne diseases. Environmental Health Perspectives. 2001; 109: 5.

Share

COinS