Abstract

Cardiovascular disease (CVD) is a major health concern for energy industry workers due to occupational risks. Digital health interventions (DHIs) offer innovative strategies for CVD prevention in this high-risk group. This study aimed to explore the effectiveness and sustainability of DHI by incorporating behavior change theories, behavior change techniques, and principles of persuasive system design. A literature review was performed using PubMed, Scopus, Web of Science, and CINAHL databases to collect relevant information on interventions for CVD prevention among energy sector workers. The results indicated that while DHI could improve physical activity, dietary habits, and medication adherence in the short term, sustaining these changes remained challenging due to intervention fatigue, lack of ongoing support, and changing user engagement. To maintain long-term effectiveness, strategies including adaptive interventions, gamification, social support, and iterative refinement based on user feedback are essential. Furthermore, employing a user-centered design approach and integrating DHIs with existing health programs can further enhance sustained behavior change. In conclusion, DHI holds significant potential for CVD prevention in the energy industry. However, its long-term success requires structured approaches, personalized strategies, and ongoing evaluation tailored to this unique occupational setting.

References

1. World Health Organization. Cardiovascular diseases (CVDs). Geneva: World Health Organization; 2021.

2. Tepe S, Eti S, Moda HM, et al. Evaluation of psychosocial risk factors encountered for energy sector employees by MAIRCA method. In: Dinçer H, Yüksel S, Deveci M, editors. Decision making in interdisciplinary renewable energy projects. Springer, Cham; 2024. p. 65-83. DOI: 10.1007/978-3-031-51532-3_6.

3. Angerer P, Schmook R, Elfantel I, et al. Night work and the risk of depression. Dtsch Arztebl Int. 2017; 114 (24): 404-411. DOI: 10.3238/arztebl.2017.0404.

4. Mochtar I, Modjo R. Risk of major cardiovascular events in offshore oil and gas industry workers in Qatar. Malays J Med Health Sci. 2024; 20 (2): 191-195. DOI: 10.47836/mjmhs.20.2.25.

5. Mannocci A, Pignalosa S, Saulle R, et al. Prevalence of major cardiovascular risk factors among oil and gas and energy company workers. Ann Ist Super Sanita. 2015; 51 (2): 148-153. DOI: 10.4415/ANN_15_02_13.

6. Vetter C, Devore EE, Wegrzyn LR, et al. Association between rotating night shift work and risk of coronary heart disease among women. JAMA. 2016; 315 (16): 1726-1734. DOI: 10.1001/jama.2016.4454.

7. Kurniawidjaja LM, Martomulyono S, Susilowati IH. Teori dan aplikasi promosi kesehatan di tempat kerja meningkatkan produktivitas. Jakarta: UI Publishing; 2020.

8. Widmer RJ, Collins NM, Collins CS, et al. Digital health interventions for the prevention of cardiovascular disease. Mayo Clin Proc. 2015; 90 (4): 469-480. DOI: 10.1016/j.mayocp.2014.12.026.

9. Lin MH, Yuan WL, Huang TC, et al. Clinical effectiveness of telemedicine for chronic heart failure: A systematic review and meta-analysis. J Investig Med. 2017; 65 (5): 899-911. DOI: 10.1136/jim-2016-000199.

10. Baldassarre D, Iacoviello L, Baetta R, et al. Rationale and design of the CV-PREVITAL study: An Italian multiple cohort randomized controlled trial investigating innovative digital strategies in primary cardiovascular prevention. BMJ Open. 2023; 13 (7). DOI: 10.1136/bmjopen-2023-072040.

11. Ventura F, Brovall M, Smith F. Beyond effectiveness evaluation: Contributing to the discussion on complexity of digital health interventions with examples from cancer care. Front Public Health. 2022; 10: 883315. DOI: 10.3389/fpubh.2022.883315.

12. Yardley L, Morrison L, Bradbury K, et al. The person-based approach to intervention development: Application to digital health-related behavior change interventions. J Med Internet Res. 2015; 17 (1). DOI: 10.2196/jmir.4055.

13. Gibson I, Jennings C, Neubeck L, et al. Using a digital health intervention “INTERCEPT” to improve secondary prevention in coronary heart disease (CHD) patients: Protocol for a mixed methods non-randomized feasibility study. HRB Open Res. 2023; 6: 43. DOI: 10.12688/hrbopenres.13781.1.

14. DiClemente CC, Graydon MM. Changing behavior using the transtheoretical model. In: Hagger MS, Cameron LD, Hamilton K, Hankonen N, Lintunen T, editors. The handbook of behavior change. Cambridge: Cambridge University Press; 2020. p. 136-149. DOI: 10.1017/9781108677318.010.

15. Morren M, Grinstein A. The cross-cultural challenges of integrating personal norms into the theory of planned behavior: A meta-analytic structural equation modeling (MASEM) approach. J Environ Psychol. 2021; 75: 101593. DOI: 10.1016/j.jenvp.2021.101593.

16. Warner LM, French DP. Self-efficacy interventions. In: Hagger MS, Cameron LD, Hamilton K, Hankonen N, Lintunen T, editors. The handbook of behavior change. Cambridge: Cambridge University Press; 2020. p. 461-78. DOI: 10.1017/9781108677318.032.

17. Mair JL, Salamanca-Sanabria A, Frese B, et al. Effective behavior change techniques in digital health interventions targeting non-communicable diseases: An umbrella review; 2023. DOI: 10.31219/osf.io/n4sav.

18. Wang Y, Fadhil A, Lange JP, et al. Integrating taxonomies into theory-based digital health interventions for behavior change: A holistic framework. JMIR Res Protoc. 2019; 8 (1): e8055. DOI: 10.2196/resprot.8055.

19. Van Gemert-Pijnen L, Kelders SM, Beerlage-de Jong N, et al. Persuasive health technology. In: van Gemert-Pijnen L, Kelders SM, Kip H, Sanderman R, editors. eHealth research, theory and development: A multi-disciplinary approach. Routledge; 2018. DOI: 10.4324/9781315385907-11.

20. Xue L, Rashid AM, Ouyang S. The unified theory of acceptance and use of technology (UTAUT) in higher education: A systematic review. SAGE Open. 2024; 14 (1): 1-12. DOI: 10.1177/21582440241229570.

21. Higgins JP. Smartphone applications for patients' health and fitness. Am J Med. 2016; 129 (1): 11-19. DOI: 10.1016/j.amjmed.2015.05.038.

22. Sequi-Dominguez I, Alvarez-Bueno C, Martinez-Vizcaino V, et al. Effectiveness of mobile health interventions promoting physical activity and lifestyle interventions to reduce cardiovascular risk among individuals with metabolic syndrome: Systematic review and meta-analysis. J Med Internet Res. 2020; 22 (8): e17790. DOI: 10.2196/17790.

23. Tong H, Alnasser A, Alshahrani N, et al. The use of mobile technologies to promote physical activity and reduce sedentary behaviors in the Middle East and North Africa region: Systematic review and meta-analysis. J Med Internet Res. 2024; 26: e53651. DOI: 10.2196/53651.

24. Perski O, Blandford A, West R, et al. Conceptualising engagement with digital behaviour change interventions: A systematic review using principles from critical interpretive synthesis. Transl Behav Med. 2017; 17 (2): 254-267. DOI: 10.1007/s13142-016-0453-1.

25. Murray E, Hekler EB, Andersson G, et al. Evaluating digital health interventions: Key questions and approaches. Am J Prev Med. 2016; 51 (5): 843-851. DOI: 10.1016/j.amepre.2016.06.008.

26. Nahum-Shani I, Smith SN, Spring BJ, et al. Just-in-time adaptive interventions (JITAIs) in mobile health: Key components and design principles for ongoing health behavior support. Ann Behav Med. 2018; 52 (6): 446-462. DOI: 10.1007/s12160-016-9830-8.

27. Äikäs AH, Absetz P, Hirvensalo MH, et al. What can you achieve in 8 years? A case study on participation, effectiveness, and overall impact of a comprehensive workplace health promotion program. J Occup Environ Med. 2019; 61 (12): 964-977. DOI: 10.1097/JOM.0000000000001699.

28. Koivisto J, Hamari J. The rise of motivational information systems: A review of gamification research. Int J Inf Manage. 2019; 45: 191-210. DOI: 10.1016/j.ijinfomgt.

29. Lowensteyn I, Berberian V, Belisle P, et al. The sustainability of a workplace wellness program that incorporates gamification principles: Participant engagement and health benefits after 2 years. Am J Health Promot. 2019; 33 (6): 850-858. DOI: 10.1177/0890117118823165.

30. Rapp A, Tirassa M, Tirabeni L. Rethinking technologies for behavior change: A view from the inside of human change. ACM Trans Comput Hum Interact. 2019; 26 (4): 22. DOI: 10.1145/3318142.

31. Rachmawati I, Krisnana IK, Kurnia ID, et al. Peer support and healthy lifestyle among adolescents in urban areas in Indonesia. Int J Public Health Sci. 2024; 13 (4): 1930. DOI: 10.11591/ijphs.v13i4.23890.

32. Goode AD, Frith MJ, Hyne SA, et al. Applying a user-centered design approach to optimize a workplace initiative for wide-scale implementation. Int J Environ Res Public Health. 2022; 19 (13): 8096. DOI: 10.3390/ijerph19138096.

33. De Moel-Mandel C, Lynch C, Issaka A, et al. Optimising the implementation of digital-supported interventions for the secondary prevention of heart disease: A systematic review using the RE-AIM planning and evaluation framework. BMC Health Serv Res. 2023; 23: 1347. DOI: 10.1186/s12913-023-10361-6.

34. Jin MF, Noseworthy PA, Yao X. Assessing AI solution effectiveness: The role of pragmatic trials. Mayo Clin Proc Digit Health. 2024; 2 (4): 499-510. DOI: 10.1016/j.mcpdig.2024.06.010.

35. Adekugbe AP, Ibeh CV. Navigating ethical challenges in data management for U.S. program development: Best practices and recommendations. Int J Multidiscip Educ Res. 2024; 6 (4): 982. DOI: 10.51594/ijmer.v6i4.982.

36. Chwiłkowska-Kubala A, Cyfert S, Malewska K, et al. The impact of resources on digital transformation in energy sector companies: The role of readiness for digital transformation. Technol Soc. 2023; 74: 102315. DOI: 10.1016/j.techsoc.2023.102315.

37. Roberts R, Flin R, Corradi L. Maximizing technology for the energy transition: An organisational innovation adoption culture survey. 2023. DOI: 10.2118/215557-ms.

38. Ramachandran HJ. Barriers and facilitators to the adoption of digital health interventions for COPD management: A scoping review. Heart Lung. 2023; 59: 117-127. DOI: 10.1016/j.hrtlng.2023.02.004.

39. Twabi AT, Mwakabira IF, Phiri Y, et al. On the enhancement of collaboration and group support in DHIS2 program rule management. In: 2022 International conference on electrical, computer and energy technologies (ICECET). Prague: IEEE; 2022. DOI: 10.1109/ICECET55527.2022.9872957.

Share

COinS