Abstract

South Kalimantan Province continues to face the challenge of relatively high stunting prevalence despite being endowed with abundant coal resources that could serve as a source of funding for public health. Therefore, this study aimed to examine differences in stunting prevalence among cities, mining districts, and non-mining districts in South Kalimantan to raise stakeholder awareness of disparities across these regional types. This study was conducted between April and December 2024, using secondary data obtained from the Indonesian Ministry of Health and the South Kalimantan Provincial Government. R programming was used to process the data, generate visualizations, and perform analysis of variance (ANOVA) and Tukey’s honestly significant difference (HSD) tests. Following the significant ANOVA result, Tukey’s HSD test was conducted to identify specific regional pairs that differed significantly following the ANOVA result. The results showed that cities had significantly lower mean stunting prevalence than non-mining districts (p-value0.05). Additionally, no significant difference was observed between mining and non-mining districts (p-value >0.05). In conclusion, abundant coal resources in mining districts have not translated into more effective stunting reduction efforts.

References

1. de Onis M, Branca F. Childhood stunting: A global perspective. Matern Child Nutr. 2016; 12 (S1): 12–26. DOI: 10.1111/mcn.12231.

2. Beal T, Tumilowicz A, Sutrisna A, et al. A review of child stunting determinants in Indonesia. Matern Child Nutr. 2018; 14 (4): 1–10. DOI: 10.1111/mcn.12617.

3. Bebbington J, Unerman J. Advancing research into accounting and the UN sustainable development goals. Account Audit Account J. 2020; 33 (7): 1657–1670. DOI: 10.1108/AAAJ-05-2020-4556.

4. Herawati DMD, Sunjaya DK. Implementation outcomes of national convergence action policy to accelerate stunting prevention and reduction at the local level in indonesia: A qualitative study. Int J Environ Res Public Health. 2022; 19 (20): 13591. DOI: 10.3390/ijerph192013591.

5. Indra J, Khoirunurrofik K. Understanding the role of village fund and administrative capacity in stunting reduction: Empirical evidence from Indonesia. PLoS One. 2022; 17 (1): e0262743. DOI: 10.1371/journal.pone.0262743.

6. Direktorat Jenderal Perimbangan Keuangan. Laporan Perkembangan Ekonomi & Fiskal Daerah: Penggunaan Instrumen Keuangan Daerah untuk Penanganan Stunting di Daerah. Jakarta: Kementerian Keuangan Republik Indonesia; 2023.

7. The International Energy Agency. Global coal production, 2000-2025 – Charts. Paris: The International Energy Agency; 2025.

8. Marini A, Rokx C, Gallagher P. Standing Tall Peru’s Success in Overcoming its Stunting Crisis. Washington, DC: World Bank Group; 2017.

9. Huicho L, Vidal-Cárdenas E, Akseer N, et al. Drivers of stunting reduction in Peru: A country case study. Am J Clin Nutr. 2020; 112 (Suppl. 2): 816S-829S. DOI: 10.1093/ajcn/nqaa164.

10. EITI Indonesia. Penerapan Standar Global Terhadap Transparansi dan Akuntabilitas dari Industri Ekstraktif. Jakarta: EITI Indonesia; 2023.

11. Badan Kebijakan Pembangunan Kesehatan. Survei Kesehatan Indonesia (SKI): 2023 Dalam Angka. Jakarta: Kementerian Kesehatan Republik Indonesia; 2024.

12. Badan Pusat Statistik Provinsi Kalimantan Selatan. Provinsi Kalimantan Selatan Dalam Angka 2024. Banjarbaru: Badan Pusat Statistik Provinsi Kalimantan Selatan; 2024.

13. Kementerian Kesehatan Republik Indonesia. Buku Saku Hasil Studi Status Gizi Indonesia (SSGI) Tahun 2021. Jakarta: Kementerian Kesehatan Republik Indonesia; 2022.

14. Badan Kebijakan Pembangunan Kesehatan. Buku Saku Hasil Survei Status Gizi Indonesia (SSGI) 2022. Jakarta: Kementerian Kesehatan Republik Indonesia; 2023.

15. Pemerintah Pusat. Undang-undang Dasar (UUD) Tahun 1945. Jakarta: Pemerintah Pusat; 1945.

16. Andrestian MD, Noor MS, Dina RA, et al. Qualitative study on adolescent marriage and the risk of stunting in South Kalimantan. Pharmacogn J. 2023; 15 (6): 1016–1023. DOI: 10.5530/pj.2023.15.187.

17. Noor MS, Andrestian MD, Dina RA, et al. Analysis of socioeconomic, utilization of maternal health services, and toddler’s characteristics as stunting risk factors. Nutr. 2022; 14 (20): 4373. DOI: 10.3390/nu14204373.

18. Andrestian MD, Darmayanti D, Hariati NW, et al. Analysis of nutrition intervention policies in the prevalence of stunting in indonesia. Univers J Public Heal. 2025; 13 (1): 210–222. DOI: 10.13189/ujph.2025.130121.

19. Rizkiah F. Unlocking potential of data: A localized data-driven approach for stunting reduction in South Kalimantan Province. Proc Int Conf Data Sci Off Stat. 2023; 2023 (1): 683–697. DOI: 10.34123/icdsos.v2023i1.394.

20. Bebbington J, Unerman J. Achieving the united nations sustainable development goals. Account Audit Account J. 2018; 31 (1): 2–24. DOI: 10.1108/AAAJ-05-2017-2929.

21. Department of Economic and Social Affairs. Transforming Our World: The 2030 Agenda For Sustainable Development. New York: United Nations; 2015.

22. Badan Pusat Statistik. Statistik Indonesia 2024. Jakarta: Badan Pusat Statistik; 2024.

23. Pemerintah Provinsi Kalimantan Selatan. Ekosistem Kalsel. Banjarbaru: Pemerintah Provinsi Kalimatan Selatan.

24. Kementerian Kesehatan Republik Indonesia. Katalog Data - Layanan Permintaan Data. Jakarta: Kementerian Kesehatan Republik Indonesia.

25. Wickham H, Navarro D, Pederson TL. Preface to the third edition – ggplot2: Elegant Graphics for Data Analysis (3e); 2023.

26. Kassambara A. Comparing Groups: Numerical Variables Practical. Datanovia; 2019.

27. Staples TL. Expansion and evolution of the R programming language. R Soc Open Sci. 2023; 10 (4): 221550. DOI: 10.1098/rsos.221550.

28. Eberhard K. The effects of visualization on judgment and decision-making: A systematic literature review. Manag Rev Q. 2023; 73: 167–214. DOI: 10.1007/s11301-021-00235-8.

29. Huicho L, Huayanay-Espinoza CA, Herrera-Perez E, et al. Factors behind the success story of under-five stunting in Peru: A district ecological multilevel analysis. BMC Pediatr. 2017; 17: 29. DOI: 10.1186/s12887-017-0790-3.

30. Seferidi P, Guzman-Abello L, Ballard E, et al. Actions against the double burden of malnutrition in Peru: A community-informed system dynamics model. Lancet Reg Heal Am. 2025; 46: 101102. DOI: 10.1016/j.lana.2025.101102.

31. Bhutta ZA, Akseer N, Keats EC, et al. How countries can reduce child stunting at scale: Lessons from exemplar countries. Am J Clin Nutr. 2020; 112 (Suppl. 2): 894S-904S. DOI: 10.1093/ajcn/nqaa153.

32. Syamsulhakim E, Khadijah N. Graduating From a Conditional Cash Transfer Program in Indonesia: Results of a Household Survey of Prosperous-Independent Graduates of the Family Hope Program in 2020. Washington, DC: World Bank Group; 2021. DOI: 10.1596/36784

33. Cahyadi N, Hanna R, Olken BA, et al. Cumulative impacts of conditional cash transfer programs: Experimental evidence from Indonesia. Am Econ J Econ Policy. 2020; 12 (4): 88–110. DOI: 10.1257/pol.20190245.

34. Badan Penelitian dan Pengembangan Kesehatan. Hasil Utama Riskesdas 2007. Jakarta: Kementerian Kesehatan Republik Indonesia; 2008.

35. Mahendradhata Y, Trisnantoro L, Listyadewi S, et al. The Republic of Indonesia Health System Review. Health Syst Transit. 2017; 7 (1). New Delhi: World Health Organization Regional Office for South-East Asia.

36. Narh J. The resource curse and the role of institutions revisited. Environ Dev Sustain. 2025; 27: 8187–8207. DOI: 10.1007/s10668-023-04279-6.

37. Hafez R, Pambudi ES, Dwi CDR. Spending Better to Reduce Stunting in Indonesia: Findings from a Public Expenditure Review (English). Washington, DC: World Bank Group; 2020.

38. Hudaya M, Smark C, Watts T, et al. The use of accountability reports and the accountability forum: Evidence from an Indonesian Local Government. Australas Account Bus Financ J. 2015; 9 (4): 57–70. DOI: 10.14453/aabfj.v9i4.5.

39. Calderon TG, Hesford JW, Turner MJ. A framework for integrating “R” programming into the accounting curriculum. In: Calderon TG, ed. Advances in Accounting Education: Teaching and Curriculum Innovations. Leeds: Emerald Publishing Limited; 2022. p. 209–232. DOI: 10.1108/S1085-462220220000026012

40. Miller A, Pyper K. Anxiety around learning R in first Year undergraduate students: Mathematics versus biomedical sciences students. J Stat Data Sci Educ. 2024; 32 (1): 47–53. DOI: 10.1080/26939169.2023.2190010.

Share

COinS