Abstract
Diabetes mellitus is a major public health problem in many countries, and most of them are type 2 diabetes mellitus (T2DM). Air pollution is thought to contribute to the T2DM incidence, and one of the most important pollutants is PM2.5. This study aimed to determine factors related to PM2.5 exposure and individual factors in increasing the risk of T2DM based on a systematic review. The PRISMA was used as a method of data collection and selection. Of 176 relevant articles identified and screened, 12 articles from various countries published in 2013-2021 were synthesized in this study. Results showed that long-term PM2.5 exposure, high PM2.5 concentrations, and living in densely-populated areas, close to roads, and in areas with industrial activity could increase the risk of T2DM. Population with an older age (>40 years) and a BMI of overweight or obese were more vulnerable. However, men and persons who stopped or never smoked were also at higher risk; thus, further studies need to be carried out along with other risk factors. A future study is recommended to determine the effects of PM2.5 exposure on the incidence of T2DM in Indonesian populations.
References
1. Pan American Health Organization. Noncommunicable Diseases. Pan American Health Organization; 2021.
2. International Diabetes Federation. The IDF Diabetes Atlas. 10th ed. Brussels: International Diabetes Federation; 2021.
3. Basu S, Yoffe P, Hiils N, et al. The Relationship of Sugar to Population-Level Diabetes Prevalence: An Econometric Analysis of Repeated Cross- Sectional Data. PloS One. 2013; 8 (2): e57873. DOI: 10.1371/journal.pone.0057873.
4. Kementerian Kesehatan Republik Indonesia. Info DATIN Diabetes Melitus. Jakarta: Kementerian Kesehatan Republik Indonesia; 2020.
5. Lin X, Xu Y, Pan X, et al. Global, Regional, and National Burden and Trend of Diabetes in 195 Countries and Territories: An Analysis from 1990 to 2025. Sci Rep. 2020; 10 (1): 14790. DOI: 10.1038/s41598-020-71908-9.
6. Dendup T, Feng X, Clingan S, et al. Environmental Risk Factors for Developing Type 2 Diabetes Mellitus: A Systematic Review. Int J Environ Res Public Health. 2018; 15 (1): 78. DOI: 10.3390/ijerph15010078.
7. World Health Organization. Ambient (Outdoor) Air Pollution. Geneva: World Health Organization; 2021.
8. Ramdhan DH, Kurniasari F, Tejamaya M, et al. Increase of Cardiometabolic Biomarkers Among Vehicle Inspectors Exposed to PM0.25 and Compositions. Saf Health Work. 2021; 12 (1): 114-118. DOI: 10.1016/j.shaw.2020.08.005.
9. Hwang MJ, Kim JH, Koo YS, et al. Impacts of Ambient Air Pollution on Glucose Metabolism in Korean Adults: A Korea National Health and Nutrition Examination Survey Study. Environ Health. 2020; 19 (1): 1–11. DOI: 10.1186/S12940-020-00623-9/FIGURES/2.
10. Thanikachalam M, Fuller CH, Lane KJ, et al. Urban Environment as an Independent Predictor of Insulin Resistance in a South Asian Population. Int J Health Geogr. 2019; 18: 1–9. DOI: 10.1186/S12942-019-0169-9/TABLES/3.
11. Burhan H, Rahayu SR. Comparison of Culture, Social-Economics, Attitude and Behavior of Diabetes Mellitus Patients Between Urban and Rural of Southeast Sulawesi. Public Health Perspect J. 2019; 4 (1): 48–53.
12. Hariyati RTS. Mengenal Systematic Review Theory dan Studi Kasus. J Keperawatan Indones. 2010; 13: 124–32.
13. Siswanto S. Systematic Review Sebagai Metode Penelitian Untuk Mensintesis Hasil-Hasil Penelitian (Sebuah Pengantar). Bul Penelit Sist Kesehat. 2010; 13: 326–333.
14. Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ. 2021; 372: n160. DOI: 10.1136/bmj.n160.
15. Wibowo A, Putri S. Pedoman Praktis Penyusunan Naskah Ilmiah Dengan Metode Systematic Review. 1st ed. Depok: FKM UI; 2021.
16. Liu C, Yang C, Zhao Y, et al. Associations Between Long-Term Exposure to Ambient Particulate Air Pollution and Type 2 Diabetes Prevalence, Blood Glucose and Glycosylated Hemoglobin Levels in China. Environ Int. 2016; 92–93: 416–421. DOI: 10.1016/j.envint.2016.03.028.
17. Liu F, Guo Y, Liu Y, et al. Associations of Long-Term Exposure to PM1, PM2.5, NO2 with Type 2 Diabetes Mellitus Prevalence and Fasting Blood Glucose Levels in Chinese Rural Populations. Environ Int. 2019; 133: 105213. DOI: 10.1016/J.ENVINT.2019.105213.
18. Dimakakou E, Johnston HJ, Streftaris G, et al. Is Environmental and Occupational Particulate Air Pollution Exposure Related to Type-2 Diabetes and Dementia? A Cross-Sectional Analysis of the UK Biobank. Int J Environ Res Public Health. 2020; 17 (24): 9581. DOI: 10.3390/IJERPH17249581.
19. Park SK, Adar SD, O’Neill MS, et al. Long-Term Exposure to Air Pollution and Type 2 Diabetes Mellitus in a Multiethnic Cohort. Am J Epidemiol. 2015; 181: 327–336. DOI: 10.1093/AJE/KWU280.
20. Qiu H, Schooling CM, Sun S, et al. Long-Term Exposure to Fine Particulate Matter Air Pollution and Type 2 Diabetes Mellitus in Elderly: A Cohort Study in Hong Kong. Environ Int. 2018; 113: 350–356. DOI: 10.1016/J.ENVINT.2018.01.008.
21. Hansen AB, Ravnskjær L, Loft S, et al. Long-Term Exposure to Fine Particulate Matter and Incidence of Diabetes in the Danish Nurse Cohort. Environ Int. 2016; 91: 243–250. DOI: 10.1016/J.ENVINT.2016.02.036.
22. Weinmayr G, Hennig F, Fuks K, et al. Long-Term Exposure to Fine Particulate Matter and Incidence of Type 2 Diabetes Mellitus in a Cohort Study: Effects of Total and Traffic-Specific Air Pollution. Environ Health. 2015; 14: 53. DOI: 10.1186/s12940-015-0031-x.
23. Lao XQ, Guo C, Chang Ly-yun, et al. Long-Term Exposure to Ambient Fine Particulate Matter (PM 2.5) and Incident Type 2 Diabetes: A Longitudinal Cohort Study. Diabetologia. 2019; 62: 759–769. DOI: 10.1007/S00125-019-4825-1.
24. Li X, Wang M, Song Y, et al. Obesity and The Relation Between Joint Exposure to Ambient Air Pollutants and Incident Type 2 Diabetes: A Cohort Study in UK Biobank. PLoS Med. 2021; 18 (8): e1003767. DOI: 10.1371/JOURNAL.PMED.1003767.
25. Coogan PF, White LF, Yu J, et al. PM 2.5 and Diabetes and Hypertension Incidence in the Black Women’s Health Study. Epidemiology. 2016; 27: 202–210. DOI: 10.1097/EDE.0000000000000418.
26. Chilian-Herrera OL, Tamayo-Ortiz M, Texcalac-Sangrador JL, et al. PM2.5 Exposure as a Risk Factor for Type 2 Diabetes Mellitus in the Mexico City Metropolitan Area. BMC Public Health. 2021; 21 (1): 20187. DOI: 10.1186/s12889-021-12112-w.
27. Chen H, Burnett RT, Kwong JC, et al. Risk of Incident Diabetes in Relation to Long-Term Exposure to Fine Particulate Matter in Ontario, Canada. Environ Health Perspect. 2013; 121: 804–810. DOI: 10.1289/ehp.1205958.
28. World Health Organization. Diabetes. Geneva: World Health Organization; 2021.
29. World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Geneva: World Health Organization; 2021.
30. Betteng R, Pangemanan D, Mayulu N. Analisis Faktor Resiko Penyebab Terjadinya Diabetes Melitus Tipe 2 Pada Wanita Usia Produktif di Puskesmas Wawonasa. e-Biomedik. 2014; 2 (2): 404–412. DOI: 10.35790/ebm.v2i2.4554.
31. Goyal R, Singhal M, Jialal I. Type 2 Diabetes. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024.
32. Susilawati, Rahmawati R. Hubungan Usia, Jenis Kelamin dan Hipertensi dengan Kejadian Diabetes Mellitus Tipe 2 di Puskesmas Tugu Kecamatan Cimanggis Kota Depok. ARKESMAS. 2021; 6 (1): 15–22. DOI: 10.22236/arkesmas.v6i1.5829.
33. Imelda S. Faktor-Faktor yang Mempengaruhi Terjadinya Diabetes Melitus di Puskesmas Harapan Raya Tahun 2018. Scientia J. 2019; 8: 28–39. DOI: 10.5281/SCJ.V8I1.406.
34. Uomo AA, Aulia A, Rahmah S, et al. Faktor Risiko Diabetes Mellitus Tipe 2: A Systematic Review. AN-Nur: J Kaji Pengemb Kesehat Masy. 2020; 1 (1): 44–52. DOI: 10.24853/an-nur,%201,%201,%20%25p.
35. Irwan I. Epidemiologi Penyakit Tidak Menular. 1st ed. Yogyakarta: Deepublish; 2016.
36. Omar SM, Musa IR, ElSouli A, et al. Prevalence, risk factors, and glycaemic control of type 2 diabetes mellitus in eastern Sudan: A community- based study. Ther Adv Endocrinol Metab. 2019; 10: 2042018819860071. DOI: 10.1177/2042018819860071.
37. Kyrou I, Tsigos C, Mavrogianni C, et al. Sociodemographic and Lifestyle-Related Risk Factors for Identifying Vulnerable Groups for Type 2 Diabetes: A Narrative Review with Emphasis on Data from Europe. BMC Endocr Disord. 2020; 20 (Suppl 1): 134. DOI: 10.1186/s12902-019- 0463-3.
38. Jornayvaz FR, Vollenweider P, Bochud M, et al. Low Birth Weight Leads to Obesity, Diabetes and Increased Leptin Levels in Adults: The CoLaus Study. Cardiovasc Diabetol. 2016; 15: 1–10. DOI: 10.1186/s12933-016-0389-2.
39. Bernabé-Ortiz A, Carrillo-Larco RM, Gilman RH, et al. Geographical variation in the progression of type 2 diabetes in Peru: The CRONICAS Cohort Study. Diabetes Res Clin Pract. 2016; 121: 135-145. DOI: 10.1016/j.diabres.2016.09.007.
40. Kreienkamp RJ, Voight BF, Gloyn AL, et al. Genetics of Type 2 Diabetes. In: Lawrence JM, Casagrande SS, Herman WH, et al., editors. Diabetes in America. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK); 2023.
Recommended Citation
Salma RP , Fitria L .
Systematic Review of Factors Related to PM2.5 Exposure on the Risk of Type 2 Diabetes Mellitus.
Kesmas.
2024;
19(5):
15-23
DOI: 10.21109/kesmas.v19isp1.1084
Available at:
https://scholarhub.ui.ac.id/kesmas/vol19/iss5/3