Abstract

Prevention and treatment of diabetes will have a positive influence on tuberculosis (TB) since people may get TB because they have diabetes mellitus (DM). Recording and reporting through the TB Information System are not run optimally because of many factors. The information system must be strengthened to be used by private health facilities. This study used secondary data from the 2013 and 2018 Indonesian Basic Health Research (IBHR). The data was analyzed univariately and analyzed further using Orange Data Mining Tools to test the screening tool model used to predict TB in diabetic individuals. The total sample in this study from each data was 38,136 people. The 2013 IBHR stated that 749 people (2%) were diagnosed with pulmonary TB, while the 2018 IBHR stated that 97 people (0.3%) were diagnosed in the previous six months. The results of the Orange analysis showed that precision and recall calculations in this study were quite good, at 0.9. Therefore, the model would likely predict the occurrence of TB in diabetic individuals. According to Orange, the TB-DM electronic screening tool model tends to estimate the incidence of TB in diabetic individuals.

References

1. World Health Organization. Global Tuberculosis Report 2023. Geneva: World Health Organization; 2023.

2. Kementerian Kesehatan Republik Indonesia. Laporan Program Penanggulangan Tuberkulosis Tahun 2022. Jakarta: Kementerian Kesehatan Republik Indonesia; 2023.

3. Badan Pusat Statistik Provinsi DKI Jakarta. Jumlah Kasus Penyakit Menurut Provinsi/Kabupaten/Kota dan Jenis Penyakit 2018-2021. Jakarta: Badan Pusat Statistik Provinsi DKI Jakarta; 2022.

4. Dinas Kesehatan Provinsi DKI Jakarta. Profil Kesehatan Provinsi DKI Jakarta Tahun 2022. Jakarta: Dinas Kesehatan Provinsi DKI Jakarta; 2023.

5. Kementerian Kesehatan Republik Indonesia. Dashboard TB Indonesia. Jakarta: Kementerian Kesehatan Republik Indonesia; 2024.

6. Kementerian Kesehatan Republik Indonesia. Strategi Nasional Penanggulangan Tuberkulosis di Indonesia 2020-2024. Jakarta: Kementerian Kesehatan Republik Indonesia; 2022.

7. Menteri Kesehatan Republik Indonesia. Peraturan Menteri Kesehatan Nomor 67 Tahun 2016 Tentang Penanggulangan Tuberkulosis. Jakarta: Kementerian Kesehatan Republik Indonesia; 2016.

8. Presiden Republik Indonesia. Peraturan Presiden Nomor 67 Tahun 2021 tentang Penanggulangan Tuberkulosis. Jakarta: Pemerintah Pusat; 2021.

9. Wadudah F, Prasetyowati I, Bumi C. Pelaksanaan wajib notifikasi (WiFi) TB di Dinas Kesehatan Kabupaten Jember. Pustaka Kesehat. 2023; 11 (1): 54-61. DOI: 10.19184/pk.v11i1.20358.

10. Ronacher K, Joosten SA, van Crevel R, et al. Acquired immunodeficiencies and tuberculosis: Focus on HIV/AIDS and diabetes mellitus. Immunol Rev. 2015; 264 (1): 121-137. DOI: 10.1111/imr.12257.

11. Kementerian Kesehatan Republik Indonesia. Konsensus pengelolaan tuberkulosis dan diabetes melitus (TB-DM) di Indonesia. Jakarta: Kementerian Kesehatan Republik Indonesia; 2015.

12. Kementerian Kesehatan Republik Indonesia. Strategi Nasional Penanggulangan Tuberkulosis di Indonesia 2020-2024. Jakarta: Kementerian Kesehatan Republik Indonesia; 2020.

13. Kurniadi A, Widianawati E, Kusuma EJ, et al. Implementasi aplikasi Wifi TB berdasarkan persepsi kemudahan dan kemanfaatan di Kota Semarang. J Kesehatan Vokasional. 2020; 5 (2): 102-109. DOI: 10.22146/jkesvo.50483.

14. Septiani D, Haniifah FN, Riswaluyo MA, et al. Optimalisasi aplikasi SOBAT TB dalam pelayanan TB selama masa pandemi COVID-19. J Biostat Kependuduk Inform Kesehat. 2022; 2 (2): 117-125. DOI: 10.51181/bikfokes.v2i2.5794.

15. Ratnasari Y, Sjaaf AC, Djunawan A. Evaluasi sistem pencatatan dan pelaporan kasus tuberculosis di Rumah Sakit Syarif Hidayatullah. J Manaj Kesehat Yayasan RS Dr. Soetomo. 2021; 7 (1): 115-124. DOI: 10.29241/jmk.v7i1.608.

16. Ishak A, Siregar K, Aspriyati A, et al. Orange Software Usage in Data Mining Classification Method on The Dataset Lenses. In: IOP Conf Ser Mater Sci Eng. 2020; 1003: 012113. DOI: 10.1088/1757-899X/1003/1/012113.

17. Egbuchulem KI. The basics of sample size estimation: An editor’s view. Ann Ib Postgrad Med. 2023; 21 (1): 5-10.

18. Olson DL, Wu D. Predictive data mining models. 1st ed. Singapore: Springer Singapore; 2017.

19. Ratra R, Gulia P. Experimental evaluation of open source data mining tools (WEKA and Orange). Int J Eng Trends Technol. 2020; 68 (8): 30-35. DOI: 10.14445/22315381/ijett-v68i8p206s.

20. Dash S, Pani SK, Balamurugan S, et al. Biomedical data mining for information retrieval: Methodologies, techniques and applications. USA: Scrivener Publishing; 2021.

21. Zhou H. Learn data mining through Excel: A step-by-step approach for understanding machine learning methods. 2nd ed. Berkeley, CA: Apress; 2023.

22. Ikhromr FN, Sugiyarto I, Faddillah U, et al. Implementasi data mining untuk memprediksi penyakit diabetes menggunakan algoritma Naïve Bayes dan K-Nearest Neighbor. INTECOMS J Inform Technol Comput Sci. 2023; 6 (1): 416-428. DOI: 10.31539/intecoms.v6i1.5916.

23. Nahm FS. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J Anesthesiol. 2022; 75 (1): 25-36. DOI: 10.4097/kja.21209.

24. Wu Q, Liu Y, Ma YB, et al. Incidence and prevalence of pulmonary tuberculosis among patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Ann Med. 2022; 54 (1): 1657-1666. DOI: 10.1080/07853890.2022.2085318.

25. Al-Rifai RH, Pearson F, Critchley JA, et al. Association between diabetes mellitus and active tuberculosis: A systematic review and meta-analysis. PLoS One. 2017; 12 (11): 1-26. DOI: 10.1371/journal.pone.0187967.

26. Carabalí-Isajar ML, Rodríguez-Bejarano OH, Amado T, et al. Clinical manifestations and immune response to tuberculosis. World J Microbiol Biotechnol. 2023; 39: 206. DOI: 10.1007/s11274-023-03636-x.

27. Tenaye L, Mengiste B, Baraki N, et al. Diabetes mellitus among adult tuberculosis patients attending tuberculosis clinics in eastern Ethiopia. Biomed Res Int. 2019; 7640836. DOI: 10.1155/2019/7640836.

28. Alisjahbana B, McAllister SM, Ugarte-Gil C, et al. Screening diabetes mellitus patients for pulmonary tuberculosis: A multisite study in Indonesia, Peru, Romania and South Africa. Trans R Soc Trop Med Hyg. 2021; 115 (6): 634-643. DOI: 10.1093/trstmh/traa100.

29. Nugroho NP, Wati FF. Koeksistensi kanker paru dan tuberkulosis. Syifa’ Medika J Kedokt Kesehat. 2020; 11 (1): 49-64. DOI: 10.32502/sm.v11i1.2583.

30. Hosseini S, Sardo SR. Data mining tools: A case study for network intrusion detection. Multimed Tools Appl. 2021; 80 (4): 4999-5019. DOI: 10.1007/s11042-020-09916-0.

31. Hikmah IR, Yasa RN. Perbandingan hasil prediksi diagnosis pada Indian Liver Patient Dataset (ILPD) dengan teknik supervised learning menggunakan software Orange. J Telematik. 2021; 16 (2): 69-76. DOI: 10.61769/telematika.v16i2.402.

32. Arifin B, Perwitasari DA, Zulkarnain Z, et al. Models for predicting the quality of life domains on the general population through the orange data mining approach. Pharmaciana. 2022; 12 (1): 72-82. DOI: 10.12928/pharmaciana.v12i1.20827.

33. Mohi ZR. Orange data mining as a tool to compare classification algorithms. Dijlah J Sci Eng. 2020; 3 (3): 13-23.

34. Imran B, Hambali H, Subki A, et al. Data mining using random forest, naïve bayes, and adaboost models for prediction and classification of benign and malignant breast cancer. J Pilar Nusa Mandiri. 2022; 18 (1): 37-46. DOI: 10.33480/pilar.v18i1.2912.

35. Dobesova Z. Evaluation of Orange data mining software and examples for lecturing machine learning tasks in geoinformatics. Comput Appl Eng Educ. 2024; 32 (4): 1-18. DOI: 10.1002/cae.22735.

Share

COinS