Abstract

The global COVID-19 pandemic has presented humanity with difficult and unforeseeable hurdles. Among these challenges is understanding how climate-related aspects impact the survival of the SARS-CoV-2 virus. This study aimed to investigate the relationship between environmental factors, such as temperature, humidity, and rainfall, and the spread of COVID-19 cases in different regions. A time-and-place-based ecological study design was adopted, integrating geographic information systems and statistical techniques. Statistical testing revealed a significant association between humidity (p-value = 0.000; r = -0.777) and rainfall (p-value = 0.001; r = -0.561) with COVID-19 instances. However, no statistically significant relationship was found between temperature variables and COVID-19 cases. Due to the impact of changing weather conditions, governments may become concerned about developing tailored preventive and control measures, considering the varying risk levels associated with different locations.

References

1. Thomson MC, Mason SJ, eds. Climate Information for Public Health Action. New York: Routledge; 2019.

2. World Health Organization. Climate change and health. Geneva: World Health Organization; 2021.

3. Bloom DE, Black S, Rappuoli R. Emerging infectious diseases: A proactive approach. Proc Natl Acad Sci U S A. 2017; 114 (16): 4055- 4059. DOI: 10.1073/pnas.1701410114

4. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020; 382 (8): 727- 733. DOI: 10.1056/NEJMoa2001017

5. Corvino F. The covid-19 pandemic and climate change: Some lessons learned on individual ethics and social justice. Revista Portuguesa de Filosofia. 2021; 77 (2–3): 691–714. DOI: 10.17990/rpf/2021_77_2_0691

6. Oliveiros B, Caramelo L, Ferreira NC, Caramelo F. Role of temperature and humidity in the modulation of the doubling time of COVID19 cases. medRxiv; 2020. DOI: 10.1101/2020.03.05.20031872

7. Bao J, Wang Z, Yu C, Li X. The influence of temperature on mortality and its Lag effect: A study in four Chinese cities with different latitudes. BMC Public Health. 2016; 16: 375. DOI: 10.1186/s12889-016-3031-z

8. Prayitno J, Darmawan RA, Susanto JP, Nugroho R. Tinjauan Teknologi Inaktivasi Virus untuk Penanggulangan Pandemi COVID19. J Bioteknol Biosains Indones. 2021; 8 (1): 137-154. DOI: 10.29122/jbbi.v8i1.4612

9. Sobral MFF, Duarte GB, da Penha Sobral AIG, et al. Association between climate variables and global transmission oF SARS-CoV-2. Sci Total Environ. 2020; 729: 138997. DOI: 10.1016/j.scitotenv.2020.138997

10. Liu J, Zhou J, Yao J, et al. Impact of meteorological factors on the COVID-19 transmission: A multi-city study in China. Sci Total Environ. 2020; 726: 138513. DOI: 10.1016/j.scitotenv.2020.138513

11. Chen B, Liang H, Yuan X, et al. Roles of Meteorological Conditions in COVID-19 Transmission on a Worldwide Scale. medRxiv; 2020. DOI: 10.1101/2020.03.16.20037168

12. Jakarta Tanggap COVID-19. Data Pemantauan COVID-19 DKI Jakarta. Jakarta: Dinas Kesehatan Provinsi DKI Jakarta; 2020.

13. Data Online Pusat Database – BMKG. Ketersediaan Data. Jakarta: Badan Meteorologi dan Geofisika.

14. Kementerian Kesehatan Republik Indonesia. Pedoman pencegahan dan pengendalian coronavirus disease (COVID-19. Jakarta: Kementerian Kesehatan Republik Indonesia; 2020.

15. GADM Maps and Data. The base map for the Special Capital Region of Jakarta; 2020.

16. GPS Longitude and Latitude. Coordinates of the weather monitoring station; 2020.

17. Hastono SP. Statistik Kesehatan. Jakarta: Rajawali Pers; 2011.

18. Menebo MM. Temperature and precipitation associate with Covid-19 new daily cases: A correlation study between weather and COVID-19 pandemic in Oslo, Norway. Sci Total Environ. 2020; 737: 139659. DOI: 10.1016/j.scitotenv.2020.139659

19. Tosepu R, Gunawan J, Effendy DS, et al. Correlation between weather and COVID-19 pandemic in Jakarta, Indonesia. Sci Total Environ. 2020; 725: 138436. DOI: 10.1016/j.scitotenv.2020.138436

20. Biryukov J, Boydston JA, Dunning RA, et al. SARS-CoV-2 is rapidly inactivated at high temperature. Environ Chem Lett. 2021; 19 (2): 1773- 1777. DOI: 10.1007/s10311-021-01187-x

21. Riddell S, Goldie S, Hill A, et al. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol J. 2020; 17 (1): 145. DOI: 10.1186/s12985-020-01418-7

22. Egeham L. Survei BPS: 55 Persen Masyarakat Tak Patuhi Protokol Kesehatan karena Tidak Ada Sanksi. Jakarta: Liputan 6; 2020.

23. Badan Pusat Statistik. Perilaku Masyarakat di Masa Pandemi COVID19. Jakarta: Badan Pusat Statistik; 2020.

24. Biryukov J, Boydston JA, Dunning RA, et al. Increasing Temperature and Relative Humidity Accelerates Inactivation of SARS-CoV-2 on Surfaces. mSphere. 2020; 5 (4). DOI: 10.1128/msphere.00441-20

25. Haque SE, Rahman M. Association between temperature, humidity, and COVID-19 outbreaks in Bangladesh. Environ Sci Policy. 2020; 114: 253-255. DOI: 10.1016/j.envsci.2020.08.012

26. Meo SA, Abukhalaf AA, Alomar AA, et al. Effect of temperature and humidity on the dynamics of daily new cases and deaths due to COVID-19 outbreak in Gulf countries in Middle East Region. Eur Rev Med Pharmacol Sci. 2020; 24 (13): 7524-7533. DOI: 10.26355/eurrev_202007_21927

27. Chien LC, Chen LW. Meteorological impacts on the incidence of COVID-19 in the U.S. Stoch Environ Res Risk Assess. 2020; 34 (10): 1675-1680. DOI: 10.1007/s00477-020-01835-8

Share

COinS