Abstract
Introduction. Cancer patients who received chemotherapy regimen containing doxorubicin has been known to have serious side effect in heart, called as cardiotoxicity. The measurement of NT-proBNP proposed to be used as a new parameter to identify and evaluate cardiotoxicity in cancer patients earlier before it has been manifested, superior than measurement of left ventricle ejection fraction (LVEF). The aims of this study to examine the changes of NT-proBNP concentration and LVEF on patients with cancer who receive chemotherapy regimen containing doxorubicin. Methods. The study used pre and post test design to observe the changes of NT-proBNP concentration and LVEF on the patients who receive naïve doxorubicin chemotherapy and after chemotherapy-cycle I to cyce IV at the Ciptomangunkusumo hospital, Jakarta. Echocardiography and NT-proBNP were examined on naïve chemotherapy and after chemotherapy each cycle. Statistical analysis was performed by using two way Anova and Friedman nonparametric test. Results. During the period of October 2007 to June 2008, a total of 29 consecutive patiets receiving doxorubicin chemotherapy regimen CHOP (Cyclophosphamide, doxorubicin, Vincristine, Prednisone and FAC-5 Fluorouracil, doxorubicin, Cyclophosphamide) were collected. The increase of median NT-proBNP concentration between naïve chemotherapy and: post chemotherapy cycle I was 32 pg/mL (12,5-124,6 pg/mL), post chemotherapy cycle II was 135 pg/mL (44-275,2 pg/mL), post chemotherapy cycle III was 275,1 pg/mL (97,8-907,2 pg/mL), post chemotherapy cycle IV was 514,6 pg/mL (80,6-6458,2 pg/mL). With Friedman test, p< 0,000. With Anova two way test, it was found the difference between naïve LVEF and LVEF: post chemotherapy cycle I was 5,1% (p 0,000), post chemotherapy cycle II 8,9% (p 0,000), post chemotherapy cycle III 11,2% (p 0,000), post chemotherapy cycle IV 12,5% (p 0,000). Conclusions. Elevated NT-proBNP concentration and LVEF reduction had been observed in doxorubicin chemotherapy patients.
References
1. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N ENgl J Med. 1998;339:900-5. 2. Wojtacki J, Nowak EL, Kmak KL. Antrhacycline-induced cardiotoxicity: clinical course, risk factors, pathogenesis, detection and prevention. Med Sci Monit. 2000;6(2):411-20. 3. Yeh ETH, Tong AT, Lenihan DJ, Yusuf SW, Swafford J, Champion C, et al. Cardiovascular complications of cancer therapy: diagnosis, pathogenesis and management. Circulation. 2004;109(25):3122- 31. 4. Daugaard G, Lassen U, Bie P, Pedersen EB, Jensen KT, Abildgaard U, et al. Natriuretic peptides in the mnitoring of antrhacycine iduced reduction in left ventricuar ejetion fraction. Eur J Heart Failure. 2005;7(1):87-93. 5. Richards MA, Frampton CM. N-Terminal-Pro-B-Type Natriuretic Peptide: Universal marker of cardiovascular risk? Circulation. 2005;112(1):9-11. 6. Vanderheyden M, Goethals M, Verstreken S, De Bruyne B, Muller K, Van Schuerbeeck E, Bartunek J. Wall stress modulates brain natriuretic peptide production in pressure overload cardiomiopathy. J Am Coll Cardiol. 2004;44(12):2349-54. 7. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med. 1998;135(5):321-8. 8. Denus SD, Pharand C, William DR. Brain natriuretic peptide in the management of the heart failure: The versatile neurohormone. Chest. 2004;125(2):652-68. 9. McCullough PA, Omland T, Maisel AS. B-Type natriuretc peptides: a diagnostic breakthrough for clinicians. Rev Cardiovasc Med. 2003;4(2):72-80. 10. De Lemos JA, McGuire DK, Drazner MH. B-type natriuretic peptide in cardiovascular disease. Lancet. 2003;362(9380):316-22. 11. Tsekoura DK, Karavidas AI, Raisakis KG, Zacharouis AZ. Brain natriuretic peptide. Hellenic J Cardiol. 2003;44:266-70. 12. Loke I, Squire IB, Davies JE, Ng LL. Reference ranges for natriuretic peptides for diagnostic use are ependent on age, gender, and heart rate. Eur J Heart Failure. 2003;5(5):599-606. 13. Clerico A, Emdin M. Diagnostic accuracy and prognostic relevance of the measurement of cardiac natriuretic peptides: a review. Clin Chem. 2004;50(1):33-50. 14. Ekstein S, Nir A, Rein AJ, Perlez Z, Bar-Oz B, Salpeter L, et al. N-terminal-proB-type natriuretic peptide as a marker for acute anthracycline cardiotoxicity in children. J Pediatr Hemato Oncol. 2007;29(7):440-4. 15. Nainggolan L, Tambunan KL, Makmun H, Ismail D. Gambaran kinerja jantung pada penderita keganasan yang mendapat kemoterapi doksorubisin [Tesis]. [Jakarta]: Universitas Indonesia; 1998. 16. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in paients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869-79. 17. F. Hoffmann-LaRoche AG and Roche Diagnostics GmbH. The use of BNP-type peptides and ANP- type peptides for assessing the risk of suffering from a cardiovascular complication as a consequence of volume overload. Munich: European Patent; 2008. 18. Horacek JM, Pudil R, Jebavy L, Ticy M, Zak P, Maly J. Assessment of anthracycline-induceed cardiotoxicity with biochemical markers. Exp Oncol. 2007;29(4):309-13. 19. Germanakis I, Kalmanti M, Parthenakis F, Nikitovic D, Stiakaki E, Patrianakos A, et al. Correlation of plasma N-terminal pro-brain natriuretic peptide levels with left ventricle mass in children treated with anthracycline. Int J Cardiol. 2006;108(2):212-5. 20. Dodos F, Halbsguth T, Erdmann E, Hoppe UC. Usefulness of myocardial performancce index and biochemical markers for early detection of anthracycline-induced cardiotoxicity in adults. Clin Res Cardiol. 2008;97(5):318-26. 21. Mangina ST, Codorean D, Metivier M, COsta B, Himberlin C, Jouannaud C, et al. Tissue doppler imaging and conventional echocardiography after anthracycline treatment in adults: early and late alterations of left ventricular function during a prospective study. Eur J Echocardiogr. 2006;7(2):141-6. 22. Poutanen T, Tikanoja T, Riikonen P, Silvast A, Perkkio M. Long-term prospective follow-up study of cardiac function after cardiotoxic therapy for malignancy in children. J Clin Oncol. 2003;21(12):2349- 56. 23. Neilan TG, Blake SL, Ichinose F, Raher MJ, Buys ES, Jassal DS, et al. Disruption of nitric oxide synthase 3 protects against the cardiac injury, dysfunction, and mortality induced by doxorubicin. Circulation. 2007;116(5):506-14. 24. Nousiainen T, Vanninen E, Jantunen E, Puustinen J, Remes J, Rantala A, et al. Natriuretic peptides during the development of doxorubicin-induced left ventricular diastolic dysfunction. J Intern Med. 2002;251(3):228-34. 25. Nakamae H, Tsumura K, Terada Y, Nakane T, Ohta K, Yamane T, et al. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer. 2005;104(11):2492-8.
Recommended Citation
Kamelia, Telly; Waspadji, Sarwono; Makmun, Lukman Hakim; Effendi, Shufrie; Ramli, Muchlis; and Timan, Ina Susanti
(2017)
"The Changes of Amino Terminal Pro B-type Natriuretic Peptide(NT-proBNP) Concentration and Left Ventricular EjectionFraction on Doxorubicin Chemotherapy Patients,"
Jurnal Penyakit Dalam Indonesia: Vol. 4:
Iss.
2, Article 6.
DOI: 10.7454/jpdi.v4i2.127
Available at:
https://scholarhub.ui.ac.id/jpdi/vol4/iss2/6