"Sustainable Brand Trust in Mobile Banking" by Novian Tiandini and Haqqi Hidayatullah
  •  
  •  
 

JURNAL KOMUNIKASI INDONESIA

Abstract

In contemporary times, communication is important in resolving problems or crises in various field. One of them in digital transactions. The digital transactions are a frequently performed activity, including the use of mobile banking (m-banking), which has become an essential application due to the high volume of transactions utilizing it. Bank Syariah Indonesia (BSI) mobile is one of Indonesia's mobile banking services that experienced disruptions for several days in May 2023. Even BSI issued an official statement regarding the issue through their social media. This has the potential to affect users' trust in their brand, while a brand's strength is built over a long and continuous period with efforts to maximize value and assets becoming the roots of the brand itself. The purpose of this research is to analyze how BSI Mobile user reviews on Google Play Store in 2023 impact brand trust. This qualitative research employs a case study approach. Data was collected using text mining as the primary source, interviews as the secondary, and literature review. A review of BSI Mobile on the Google Play Store indicated that overall, users' trust in BSI Mobile in 2023 was relatively positive. BSI responded to user reviews on the platform to effectively communicate during a crisis and succeeded in building sustainable brand trust with their users.

Bahasa Abstract

Saat ini, komunikasi merupakan hal yang penting dalam menyelesaikan permasalahan atau krisis di berbagai bidang. Salah satunya dalam transaksi digital. Transaksi digital merupakan aktivitas yang sering dilakukan, termasuk penggunaan mobile banking (m-banking) yang kini menjadi aplikasi penting karena tingginya volume transaksi yang memanfaatkannya. Bank Syariah Indonesia (BSI) mobile merupakan salah satu layanan mobile banking Indonesia yang mengalami gangguan selama beberapa hari pada bulan Mei 2023. Bahkan BSI mengeluarkan pernyataan resmi terkait permasalahan tersebut melalui media sosialnya. Hal ini berpotensi mempengaruhi kepercayaan pengguna terhadap mereknya, sedangkan kekuatan merek dibangun dalam jangka waktu yang panjang dan berkesinambungan dengan upaya memaksimalkan nilai dan aset yang menjadi akar dari merek itu sendiri. Tujuan dari penelitian ini adalah untuk menganalisis bagaimana ulasan pengguna BSI Mobile di Google Play Store pada tahun 2023 memengaruhi kepercayaan merek. Penelitian kualitatif ini menggunakan pendekatan studi kasus. Pengumpulan data dilakukan dengan menggunakan text mining sebagai sumber primer, wawancara sebagai sumber sekunder, dan kajian pustaka. Reviu BSI Mobile di Google Play Store menunjukkan bahwa secara keseluruhan, kepercayaan pengguna terhadap BSI Mobile pada tahun 2023 tergolong positif. BSI menanggapi ulasan pengguna pada platform untuk berkomunikasi secara efektif selama krisis dan berhasil membangun kepercayaan merek yang berkelanjutan dengan penggunanya.

References

Acheadeth, L., Qomariyah, N. N., & Xirinda, M. M. (2022). Utilizing Topic Modelling in Customer Product Review for Classifying Baby Product. 2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), 52–57. https://doi.org/10.1109/CyberneticsCom55287.2022.9865282

Ardianto, R., & Marhoon, H. M. (2023). Understanding User Sentiment: Analysis of SATUSEHAT Application Reviews on Google Play Store. 1(2).

Azhar, F. (2023). Analisis Strategi Komunikasi Bank Syariah Indonesia (BSI) dalam Penanganan Krisis Serangan Siber Perbankan. KLC: Kemenkeu Learning Center.

Azizah, B. (2017). Pengaruh brand image dan brand trust terhadap loyalitas pelanggan melalui kepuasan pelanggan Bank Syariah di Kota Malang [Undergraduate, Universitas Islam Negeri Maulana Malik Ibrahim]. http://etheses.uin-malang.ac.id/6970/

Baj-Rogowska, A., & Sikorski, M. (2023). Exploring the usability and user experience of social media apps through a text mining approach. Engineering Management in Production and Services, 15(1), 86–105. https://doi.org/10.2478/emj-2023-0007

Benoit, W. L. (1997). Image Repair Discourse and Crisis Communication: Vol. Public Relations Review, Vol. 23, No. 2, hal.177-186.

Chauhan, U., Shah, S., Shiroya, D., Solanki, D., Patel, Z., Bhatia, J., Tanwar, S., Sharma, R., Marina, V., & Raboaca, M. S. (2023). Modeling Topics in DFA-Based Lemmatized Gujarati Text. Sensors, 23(5), 2708. https://doi.org/10.3390/s23052708

Delgado-Ballester, E., Munuera-Aleman, J. L., & Yague-Guillen, M. J. (2023). Development and Validation of a Brand Trust Scale. International Journal of Market Research, 45 Quarter 1, 35–53.

Fearn-Banks, K. (2011). Crisis Communication: A Casebook Approach (4th ed.). Routledge.

Ferrinadewi, E. (2008). Merek & Psikologi Konsumen Implikasi pada Strategi Pemasaran (1st ed.). Graha Ilmu.

Fink, S. (2013). Crisis Communication: The Definitive Guide to Managing the Message. McGraww-Hill.

Harika, N., Swamy, S. R., & Nilima. (2021). Artificial Intelligence-Based Ensemble Model for Rapid Prediction of Heart Disease. SN Computer Science, 2(6), 431. https://doi.org/10.1007/s42979-021-00829-9

Kherwa, P., & Bansal, P. (2018). Topic Modeling: A Comprehensive Review. ICST Transactions on Scalable Information Systems, 0(0), 159623. https://doi.org/10.4108/eai.13-7-2018.159623

Mohammed, S. H., & Al-augby, S. (2020). LSA & LDA topic modeling classification: Comparison study on e-books. Indonesian Journal of Electrical Engineering and Computer Science, 19(1), 353. https://doi.org/10.11591/ijeecs.v19.i1.pp353-362

Pal, M., & Parija, S. (2021). Prediction of Heart Diseases using Random Forest. Journal of Physics: Conference Series, 1817(1), 012009. https://doi.org/10.1088/1742-6596/1817/1/012009

Park, J. (2023). Combined Text-Mining/DEA method for measuring level of customer satisfaction from online reviews. Expert Systems with Applications, 232, 120767. https://doi.org/10.1016/j.eswa.2023.120767

Saputro, E., & Sutresna, A. S. (2024). Pengaruh Aktivitas Komunikasi Krisis Bakso Afung pada Brand Trust. Dialektika Komunika: Jurnal Kajian Komunikasi dan Pembangunan Daerah, 11(2), 181–193. https://doi.org/10.33592/dk.v11i2.4447

Sejati, V. R. A., & Pramusinto, W. (2023). Analisis Sentimen Ulasan Pengguna Aplikasi Ipusnas pada Google Play Store dengan Multinomial Naïve. 2.

Singh, S. N., & Sarraf, T. (2020). Sentiment Analysis of a Product based on User Reviews using Random Forests Algorithm. 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), 112–116. https://doi.org/10.1109/Confluence47617.2020.9058128

Databoks. (2023). Transaksi Digital Banking di Indonesia Tumbuh 158% dalam 5 Tahun Terakhir Retrieved November 29, 2023, from https://databoks.katadata.co.id/datapublish/2023/07/05/transaksi-digitalbanking-di-indonesia-tumbuh-158-dalam-5-tahun-terakhir

Yin, R. K. (2009). Case Study Research: Design and Methods 4th ed. Sage Publications

Share

COinS