•  
  •  
 

JURNAL KOMUNIKASI INDONESIA

Abstract

Artificial Intelligence (AI) is a transformative force shaping society, and online media plays a pivotal role in shaping public perceptions of it. Given the media’s influence, understanding its framing of recent AI advancements, such as the emergence of Large Language Models (LLMs) like ChatGPT, becomes increasingly critical. These models have revolutionized human-machine interaction and are subject to media narratives that can significantly influence public understanding and policy. This research explores the framing of AI narratives in Indonesian online media through the utilization of topic modelling. The study aims to uncover the dominant narratives and themes surrounding AI, including the nuanced portrayal of LLMs and Chat GPT. Using a dataset of online articles and news pieces on AI in the Indonesian context, topic modelling analysis identifies and analyzes the key topics and sentiments. The findings reveal that Indonesian online media tends to portray AI positively, emphasizing its potential for innovation and economic growth. However, concern about ethical implications and job displacement are also present. These findings provide important insights for AI developers, journalists, and policymakers, highlighting the importance of balanced reporting to shape informed public opinion and ethical AI practices.

Bahasa Abstract

Kecerdasan Buatan (AI) merupakan kekuatan transformatif yang membentuk masyarakat, dan media online memiliki peran penting dalam membentuk persepsi publik terhadap AI tersebut. Pentingnya memahami bagaimana media membingkai perkembangan AI terkini, termasuk hadirnya Model Bahasa Besar (LLMs) seperti ChatGPT, tidak bisa diabaikan. Model-model ini merubah interaksi manusia dan mesin dan juga menjadi subjek narasi media yang dapat memengaruhi pemahaman dan kebijakan publik terhadap AI. Riset ini mengeksplorasi bagaimana AI dibingkai dalam media online di Indonesia dengan menggunakan metode pemodelan topik. Studi ini bertujuan menemukan narasi dan tema utama seputar AI, termasuk gambaran mengenai LLMs dan ChatGPT. Pemodelan topik diterapkan pada sejumlah besar data pemberitaan dua media online di Indonesia untuk mengidentifikasi topik dan sentimen yang ada. Hasilnya menunjukkan bahwa media online cenderung memandang AI secara positif, khususnya

terkait potensi inovasi dan pertumbuhan ekonomi. Meskipun begitu, ada pula kekhawatiran mengenai dampak etis dan tergantikannya tenaga kerja manusia. Temuan ini memberikan pandangan penting bagi pengembang AI, jurnalis, dan pembuat kebijakan, menegaskan pentingnya laporan yang seimbang untuk membentuk opini publik dan praktik AI yang bertanggung jawab.

References

Abdullah, M., Madain, A., & Jararweh, Y. (2022). ChatGPT: Fundamentals, Applications and Social Impacts. 2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS), pp. 1–8. https://doi.org/10.1109/SNAMS58071.2022.10062688

Abuzayed, A., & Al-Khalifa, H. (2021). BERT for Arabic Topic Modeling: An Experimental Study on BERTopic Technique. Procedia Computer Science, 189, 191–194. https://doi.org/10.1016/j.procs.2021.05.096

Andrabi, S. A. B., & Wahid, A. (2022). A Comparative Study of Word Embedding Techniques in Natural Language Processing. In S. Smys, J. M. R. S. Tavares, & V. E. Balas (Eds.), Computational Vision and Bio-Inspired Computing (Vol. 1420, pp. 701–712). Springer Singapore. https://doi.org/10.1007/978-981-16-9573-5_50

Anderson, J., & Rainie, L. (2023). As AI Spreads, Experts Predict the Best and Worst Changes in Digital Life by 2035. Pew Research Center. https://www.pewresearch.org/internet/2023/06/21/as-ai-spreads-experts-predict-the-best-and-worst-changes-in-digital-life-by-2035/

Awasth, P., & R. Kaveri, P. (2023). CHATGPT: THE POWER OF AI. INDIAN JOURNAL OF APPLIED RESEARCH, 47–49. https://doi.org/10.36106/ijar/0624476

Basu, S. (2023). Three Decades of Social Construction of Technology: Dynamic Yet Fuzzy? The Methodological Conundrum. Social Epistemology, 37(3), 259–275. https://doi.org/10.1080/02691728.2022.2120783

Bijker, W. E. (2010). How is technology made?—That is the question! Cambridge Journal of Economics, 34(1), 63–76. https://doi.org/10.1093/cje/bep068

Burscher, B., Vliegenthart, R., & De Vreese, C. H. (2015). Using Supervised Machine Learning to Code Policy Issues: Can Classifiers Generalize across Contexts? The ANNALS of the American Academy of Political and Social Science, 659(1), 122–131. https://doi.org/10.1177/0002716215569441

Cao, L. (2023). DiagGPT: An LLM-based Chatbot with Automatic Topic Management for Task-Oriented Dialogue. https://doi.org/10.48550/ARXIV.2308.08043

Chuan, C.-H., Tsai, W.-H. S., & Cho, S. Y. (2019). Framing Artificial Intelligence in American Newspapers. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, 339–344. https://doi.org/10.1145/3306618.3314285

Dehler-Holland, J., Schumacher, K., & Fichtner, W. (2021). Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act. Patterns, 2(1), 100169. https://doi.org/10.1016/j.patter.2020.100169

Garvey, C., & Maskal, C. (2020). Sentiment Analysis of the News Media on Artificial Intelligence Does Not Support Claims of Negative Bias Against Artificial Intelligence. OMICS: A Journal of Integrative Biology, 24(5), 286–299. https://doi.org/10.1089/omi.2019.0078

Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. https://doi.org/10.48550/ARXIV.2203.05794

Grootendorst, M. (2023). BERTopic [GitHub]. https://maartengr.github.io/BERTopic/index.html

Guizzardi, S., Colangelo, M. T., Mirandola, P., & Galli, C. (2023). Modeling new trends in bone regeneration, using the BERTopic approach. Regenerative Medicine, 18(9), 719–734. https://doi.org/10.2217/rme-2023-0096

Güran, M. S., & Özarslan, H. (2022). Framing Theory in the Age of Social Media. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 48, 446–457. https://doi.org/10.52642/susbed.1142562

Guzman, A. L., & Lewis, S. C. (2020). Artificial intelligence and communication: A Human–Machine Communication research agenda. New Media & Society, 22(1), 70–86. https://doi.org/10.1177/1461444819858691

Hao, R., Hu, L., Qi, W., Wu, Q., Zhang, Y., & Nie, L. (2023). ChatLLM Network: More brains, More intelligence. https://doi.org/10.48550/ARXIV.2304.12998

Klein, H. K., & Kleinman, D. L. (2002). The Social Construction of Technology: Structural Considerations. Science, Technology, & Human Values, 27(1), 28–52. https://doi.org/10.1177/016224390202700102

Lee, S.-S., Yoo, I., & Kim, J. (2020). An analysis of public perception on Artificial Intelligence (AI) education using Big Data: Based on News articles and Twitter. Journal of Digital Convergence, 18(6), 9–16. https://doi.org/10.14400/JDC.2020.18.6.009

Maddigan, P., & Susnjak, T. (2023). Chat2VIS: Generating Data Visualizations via Natural Language Using ChatGPT, Codex and GPT-3 Large Language Models. IEEE Access, 11, 45181–45193. https://doi.org/10.1109/ACCESS.2023.3274199

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge University Press.

Mieczkowski, H., Hancock, J. T., Naaman, M., Jung, M., & Hohenstein, J. (2021). AI-Mediated Communication: Language Use and Interpersonal Effects in a Referential Communication Task. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1), 1–14. https://doi.org/10.1145/3449091

Min, B., Ross, H., Sulem, E., Veyseh, A. P. B., Nguyen, T. H., Sainz, O., Agirre, E., Heinz, I., & Roth, D. (2021). Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey. https://doi.org/10.48550/ARXIV.2111.01243

Naaman, M. (2022). “My AI must have been broken”: How AI Stands to Reshape Human Communication. Proceedings of the 16th ACM Conference on Recommender Systems, 1–1. https://doi.org/10.1145/3523227.3555724

Nah, S., McNealy, J., Kim, J. H., & Joo, J. (2020). Communicating Artificial Intelligence (AI): Theory, Research, and Practice. Communication Studies, 71(3), 369–372. https://doi.org/10.1080/10510974.2020.1788909

Newman, N., Fletcher, R., Eddy, K., Robertson, C. T., & Nielsen, R. K. (2023). Reuters Institute Digital News Report 2023. Reuters Institute for Study of Journalism. https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2023

Nguyen, D., & Hekman, E. (2022). The news framing of artificial intelligence: A critical exploration of how media discourses make sense of automation. AI & SOCIETY. https://doi.org/10.1007/s00146-022-01511-1

Octavianto, A. W. (2014). Strukturasi Giddens dan Social Construction of Technology (SCoT) Sebagai Pisau Analisis Alternatif Penelitian Sosial Atas Teknologi Media Baru. Jurnal ULTIMA Comm, 6(2), 41–57. https://doi.org/10.31937/ultimacomm.v6i2.417

Păvăloaia, V.-D., & Necula, S.-C. (2023). Artificial Intelligence as a Disruptive Technology—A Systematic Literature Review. Electronics, 12(5), 1102. https://doi.org/10.3390/electronics12051102

Sawant, S., Yu, J., Pandya, K., Ngan, C.-K., & Bardeli, R. (2022). An Enhanced BERTopic Framework and Algorithm for Improving Topic Coherence and Diversity. 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), 2251–2257. https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00332

Scarpino, I., Zucco, C., Vallelunga, R., Luzza, F., & Cannataro, M. (2022). Investigating Topic Modeling Techniques to Extract Meaningful Insights in Italian Long COVID Narration. BioTech, 11(3), 41. https://doi.org/10.3390/biotech11030041

Scheufele, D. A. (1999). Framing as a Theory of Media Effects. Journal of Communication, 49(1), 103–122. https://doi.org/10.1111/j.1460-2466.1999.tb02784.x

Vergeer, M. (2020). Artificial Intelligence in the Dutch Press: An Analysis of Topics and Trends. Communication Studies, 71(3), 373–392. https://doi.org/10.1080/10510974.2020.1733038

Vliegenthart, R. (2012). Framing in Mass Communication Research – An Overview and Assessment. Sociology Compass, 6(12), 937–948. https://doi.org/10.1111/soc4.12003

Vreese, C. H. (2005). News framing: Theory and typology. Information Design Journal, 13(1), 51–62. https://doi.org/10.1075/idjdd.13.1.06vre

Wu, C., Xiong, Q., Yi, H., Yu, Y., Zhu, Q., Gao, M., & Chen, J. (2021). Multiple-element joint detection for Aspect-Based Sentiment Analysis. Knowledge-Based Systems, 223, 107073. https://doi.org/10.1016/j.knosys.2021.107073

Yadav, V., & Shakya, S. (2022). Sentiment Analysis and Topic Modeling on News Headlines. Journal of Ubiquitous Computing and Communication Technologies, 4(3), 204–218. https://doi.org/10.36548/jucct.2022.3.008

Zamith, R., & Lewis, S. C. (2015). Content Analysis and the Algorithmic Coder: What Computational Social Science Means for Traditional Modes of Media Analysis. The ANNALS of the American Academy of Political and Social Science, 659(1), 307–318. https://doi.org/10.1177/0002716215570576

Zhai, Y., Yan, J., Zhang, H., & Lu, W. (2020). Tracing the evolution of AI: Conceptualization of artificial intelligence in mass media discourse. Information Discovery and Delivery, 48(3), 137–149. https://doi.org/10.1108/IDD-01-2020-0007

Zhang, W., Deng, Y., Liu, B., Pan, S. J., & Bing, L. (2023). Sentiment Analysis in the Era of Large Language Models: A Reality Check. https://doi.org/10.48550/ARXIV.2305.15005

Share

COinS