•  
  •  
 

Abstract

Objective: This research aims to analyze the characteristics of a BAM-HA biocomposite with ratios of 4:1 and 4:2. Methods: This research is an in vitro laboratory experiment that starts by grinding fresh BAM to produce amnion slurry and then, adding HA powder to the slurry and carrying out freeze-drying on the slurry. Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscope-Energy dispersive X-ray (SEM-EDX) tests are used to analyze the characteristics of the BAM-HA biocomposite. Results: The FTIR test results showed that the BAM-HA biocomposite had amide functional groups I, II, III, A, B, OH, CO32-, and PO43-. SEM test results showed revealed different types of pores on the surface of the biocomposite with ratios of 4:1 and 4:2. The elements C, O, Na, Mg, Si, P, CL, Ca, and Nb were found in the BAM-HA biocomposite following testing by SEM-EDX. Conclusion: Based on the research results, this research has succeeded in combining BAM-HA. The ratio BAM-HA 4:2 has the potential as a scaffold for alveolar bone tissue.

References

  1. Esposito M, Grusovin MG, Felice P, Karatzopoulos G, Worthington HV, Coulthard P. The efficacy of horizontal and vertical bone augmentation procedures for dental implants - A Cochrane systematic review. Eur J Oral Implantol. 2009 ; 2(3):167-84.
  2. Aufan MR, Daulay AH, Indriani D, Nuruddin A, Purwasasmita BS. Sintesis scaffold alginat-kitosan-karbonat apatit sebagai bone graft menggunakan metode freeze drying. J Biofisika. 2012; 8(1):16-24.
  3. Hutama AS, Nugroho A. Optimasi Pembuatan Scaffold dengan Struktur Pori-Pori Beraturan Menggunakan Metode Response Surface Method. Jurnal Mater dan Proses Manufaktur. 2020; 4(1):1-11.
  4. Octarina, Munadziroh E, Razak FA. Physical modification of bovine amniotic membrane for dental application. J Int Dent Med Res. 2021; 14(4):1425-8.
  5. Octarina, Munadziroh E. Potential of bovine amniotic membrane and hydroxyapatite biocomposite materials for enhanced bone formation. Malays J Med Health Sci. 2021; 17:124-6.
  6. Ratnayake JTB, Gould ML, Shavandi A, Mucalo M, Dias GJ. Development and characterization of a xenograft material from New Zealand sourced bovine cancellous bone. J Biomed Mater Res B Appl Biomater. 2017; 105(5):1054-62.
  7. Faadhila TI, Valentina MN, Munadziroh E, Nirwana I, Soekartono H, Surboyo MDC. Bovine sponge amnion stimulates socket healing: A histological analysis. J Adv Pharm Technol Res. 2021; 12(1):99-103.
  8. Oh D, Son D, Kim J, Kwon SY. Freeze-dried bovine amniotic membrane as a cell delivery scaffold in a porcine model of radiation-induced chronic wounds. Arch Plast Surg. 2021; 48(4):448-56.
  9. Min S, Yoon JY, Park SY, Kwon HH, Suh DH. Clinical effect of bovine amniotic membrane and hydrocolloid on wound by laser treatment: Prospective comparative randomized clinical trial. Wound Repair Regen. 2014; 22(2):212-9.
  10. Octarina, Munadziroh E, Razak FA, Surboyo MDC. Characterisation of bovine amniotic membrane with hydroxyapatite bio-composite. Coatings. 2022; 12(10):1403.
  11. Filio P, Octarina, Komariah F. Characterization of fabricated bovine hydroxyapatite crystal as socket preservation material: An SEM-EDX and X-ray diffraction study. World J Dent. 2022; 13(S2):S175-81.
  12. Budiatin AS, Gani MA, Samirah, Ardianto C, Raharjanti AM, Septiani I, et al. Bovine hydroxyapatite-based bone scaffold with gentamicin accelerates vascularization and remodeling of bone defect. Int J Biomater. 2021; 2021:5560891.
  13. Lambert F, Léonard A, Drion P, Sourice S, Layrolle P, Rompen E. Influence of space-filling materials in subantral bone augmentation: blood clot vs. autogenous bone chips vs. bovine hydroxyapatite. Clin Oral Impl Res. 2011; 22;538-45.
  14. Octarina, Munadziroh E, Razak FA, Handharyani E, Surboyo MDC. The role of bovine amniotic membrane and hydroxyapatite for the ridge preservation. Int J Biomater. 2024; 2024:4053527.
  15. Ihsan P. The difference of epidermal growth factor concentration between fresh and freeze dried amniotic membranes. Jurnal Oftalmologi Indonesia. 2009; 7(2):62-6.
  16. Park M, Kim S, Kim IS, Son D. Healing of a porcine burn wound dressed with human and bovine amniotic membranes. Wound Repair Regen. 2008; 16(4):520-8.
  17. Gupta A, Kedige SD, Jain K. Amnion and chorion membranes: Potential stem cell reservoir with wide applications in periodontics. Int J Biomater. 2015; 2015:274082.
  18. Indrawati DW, Munadziroh E, Sulisetyawati TIB, El Fadhlallah PM. Sponge amnion potential in post tooth extraction wound healing by interleukin-6 and bone morphogenetic protein-2 expression analysis: An animal study. Dent Res J (Isfahan). 2019; 16(5):283-8.
  19. Madhan G, Singh M. Comparison of ability of Platelet-rich Fibrin vs CollaPlug in maintaining the buccal bone height of sockets following extractions in 20 patients. J Health Sci Res. 2017; 8(1):1-6.
  20. Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone grafts and substitutes in dentistry: A review of current trends and developments. Molecules. 2021; 26(10):3007.
  21. Zhang D, Wu X, Chen J, Lin K. The development of collagen based composite scaffolds for bone regeneration. Bioact Mater. 2017; 3(1):129-38.
  22. Warastuti Y, Budianto E, Darmawan. Sintesis dan karakterisasi membran komposit hidroksiapatit tulang sapi-khitosan-poli(vinil Alkohol) untuk aplikasi biomaterial. Jurnal Sains Materi Indonesia. 2015; 16(2):83-90.
  23. Noviyanti AR, Haryono H, Pandu R, Eddy DR. Cangkang telur ayam sebagai sumber kalsium dalam pembuatan hidroksiapatit untuk aplikasi graft tulang. Chimica et Natura Acta. 2017; 5(3):107-11.
  24. Lopez Marquez A, Gareis IE, Dias FJ, Gerhard C, Lezcano MF. Methods to characterize electrospun scaffold morphology: A critical review. Polymers (Basel). 2022; 14(3):467.
  25. López Angulo DE, do Amaral Sobral PJ. Characterization of gelatin/chitosan scaffold blended with aloe vera and snail mucus for biomedical purpose. Int J Biol Macromol. 2016 ; 92:645-53.
  26. Stuckensen K, Lamo-Espinosa JM, Muiños-López E, Ripalda-Cemboráin P, López-Martínez T, Iglesias E, et al. Anisotropic cryostructured collagen scaffolds for efficient delivery of RhBMP-2 and enhanced bone regeneration. Materials (Basel). 2019; 12(19):3105.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.