•  
  •  
 

Abstract

The biocompatibility of toothpaste in an oral cavity should be approved by clinical trials. Nowadays, herbal toothpaste is increasing in popularity due to its natural ingredients. Being genetically similar to humans, zebrafish are used in potential toxicity testing. The zebrafish embryotoxicity test is a fast and straightforward method to study chemical toxicity during embryogenesis.

Objective: This study aimed to evaluate if there was any biocompatibility of the toothpaste on zebrafish embryos.

Methods: Adult AB strain zebrafish were used according to Institutional Animal Care and Use Committee protocols. Normally dividing, spherical embryos were exposed to herbal toothpaste with ginger (Gumgumix, Turkey) (50 mg/L) and conventional toothpaste (Signal, Expert Protection, Bulgaria) (50 mg/L) in well plates containing 20 embryos, having four replicates. Developmental effects, mortality, and hatching rates were evaluated for 72h.

Results: Zebrafish embryos exposed to conventional toothpaste had a higher mortality rate than those exposed to herbal toothpaste; they hatched later and delayed in development. There was no difference between herbal toothpaste and the control group regarding mortality and hatching rates (p > 0.005).

Conclusion: The herbal toothpaste showed higher biocompatibility on zebrafish embryos compared to the conventional toothpaste under the condition of this study.

References

  1. Lippert F. An introduction to toothpaste - Its purpose, history and ingredients. Monogr Oral Sci. 2013; 23:1-14.
  2. Magny R, Auzeil N, Olivier E, Kessal K, Regazzetti A, Dutot M, Mélik-Parsadaniantz S, Rat P, Baudouin C, Laprévote O, Brignole-Baudouin F. Lipidomic analysis of human corneal epithelial cells exposed to ocular irritants highlights the role of phospholipid and sphingolipid metabolisms in detergent toxicity mechanisms. Biochimie. 2020; 178:148-57.
  3. Kasi SR, Özcan M, Feilzer AJ. Side effects of sodium lauryl sulfate applied in toothpastes: A scoping review. Am J Dent. 2022; 35(2):84-8.
  4. O’Mullane DM, Baez RJ, Jones S, Lennon MA, Petersen PE, Rugg-Gunn AJ, Whelton H, Whitford GM. Fluoride and oral health. Community Dent Health. 2016; 33(2):69-99.
  5. Guth S, Hüser S, Roth A, Degen G, Diel P, Edlund K, Eisenbrand G, Engel KH, Epe B, Grune T, Heinz V, Henle T, Humpf HU, Jäger H, Joost HG, Kulling SE, Lampen A, Mally A, Marchan R, Marko D, Mühle E, Nitsche MA, Röhrdanz E, Stadler R, van Thriel C, Vieths S, Vogel RF, Wascher E, Watzl C, Nöthlings U, Hengstler JG. Toxicity of fluoride: Critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses. Arch Toxicol. 2020; 94(5):1375-415.
  6. Karimi A, Majlesi M, Rafieian-Kopaei M. Herbal versus synthetic drugs; Beliefs and facts. J Nephropharmacol. 2015; 4(1):27-30.
  7. Janakiram C, Venkitachalam R, Fontelo P, Iafolla TJ, Dye BA. Effectiveness of herbal oral care products in reducing dental plaque & gingivitis - A systematic review and meta-analysis. BMC Complement Med Ther. 2020; 20(1):43.
  8. Kanth MR, Prakash AR, Sreenath G, Reddy VS, Huldah S. Efficacy of specific plant products on microorganisms causing dental caries. J Clin Diagn Res. 2016; 10(12):ZM01-3.
  9. Jia HR, Zhu YX, Duan QY, Chen Z, Wu FG. Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. J Control Release. 2019; 311-312:301-18.
  10. Chakravarthy S, Sadagopan S, Nair A, Sukumaran SK. Zebrafish as an in vivo high-throughput model for genotoxicity. Zebrafish. 2014; 11(2):154-66.
  11. Bartlett JD, Dwyer SE, Beniash E, Skobe Z, Payne-Ferreira TL. Fluorosis: A new model and new insights. J Dent Res. 2005; 84(9):832-6.
  12. Zhang Y, Zhang Y, Zheng X, Xu R, He H, Duan X. Grading and quantification of dental fluorosis in zebrafish larva. Arch Oral Biol. 2016; 70:16-23.
  13. Shivarajashankara Y, Shivashankara A, Bhat PG, Rao SH. Brain lipid peroxidation and antioxidant systems of young rats in chronic f luoride intoxication. Fluoride. 2002; 35(3):197-203.
  14. Aguilar F, Charrondiere UR, Dusemund B, Galtier P, Gilbert J, Gott DM, Grilli S, Guertler R, Kass GEN, Koenig J, Lambré C, Larsen J-C, Leblanc J-C, Mortensen A, Parent-Massin D, Pratt I, Rietjens I, Stankovic I, Tobback P, Verguieva T, Woutersen R. Calcium fluoride as a source of fluoride added for nutritional purposes to food supplements-Scientific Opinion of the Panel on Food Additives and Nutrient Sources added to Food. EFSA J. 2008; 882:1-15.
  15. Meseli S, Kaplan G, Cansiz D, Ustundag UV, Unal I, Emekli-Alturfan E, Yanikoglu F, Tagtekin D. The biocompatibility of sodium lauryl sulphate on developing zebrafish embryos. Experimed. 2021; 11(2):67-72.
  16. Oliveira R, Domingues I, Koppe Grisolia C, Soares AM. Effects of triclosan on zebrafish early-life stages and adults. Environ Sci Pollut Res Int. 2009; 16(6):679-88.
  17. Hoogendoorn H, Scholtes W. De invloed van de activering van het lactoperoxydase-systeem in het speeksel bij het ontstaan van cariës en chronisch recidiverende aften (I) [Influence of the activation of the lactoperoxidase system in saliva on the initiation of caries and chronic, recurrent aphthes. I]. Ned Tijdschr Tandheelkd. 1979; 86(1):36-9.
  18. Shim YJ, Choi JH, Ahn HJ, Kwon JS. Effect of sodium lauryl sulfate on recurrent aphthous
  19. stomatitis: A randomized controlled clinical trial. Oral Dis. 2012; 18(7):655-60.
  20. Stec IP. A possible relationship bet ween desquamation and dentifrices. A clinical study. J Am Dent Hyg Assoc. 1972; 46(1):42-5.
  21. Kowitz G, Lucatorto F, Bennett W. Effects of dentifrices on soft tissues of the oral cavity. J Oral Med. 1973; 28(4):105-9.
  22. Allen AL, Hawley CE, Cutright DE, Seibert JS. An investigation of the clinical and histologic effects of selected dentifrices on human palatal mucosa. J Periodontol. 1975; 46(2):102-12.
  23. Ho JCH, Hsiao CD, Kawakami K, Tse WKF. Triclosan (TCS) exposure impairs lipid metabolism in zebrafish embryos. Aquat Toxicol. 2016; 173:29- 35.
  24. Rubright WC, Walker JA, Karlsson UL, Diehl DL. Oral slough caused by dentifrice detergents and aggravated by drugs with antisialic activity. J Am Dent Assoc. 1978; 97(2):215-20.
  25. Searls JC, Berg CA. The influence of dentifrice detergents on oral epithelial slough. Dent Hyg (Chic). 1986; 60(1):20-3.
  26. Baert JH, Veys RJ. Triclosan inhibits sodium lauryl sulphate-induced changes in expression of cytokeratin genes in hamster cheek pouch epithelium. J Oral Pathol Med. 1997; 26(4):181-6.
  27. Tadin A, Gavic L, Govic T, Galic N, Zorica Vladislavic N, Zeljezic D. In vivo evaluation of fluoride and sodium lauryl sulphate in toothpaste on buccal epithelial cells toxicity. Acta Odontol Scand. 2019; 77(5):386-93.
  28. Maier E, Kurz K, Jenny M, Schennach H, Ueberall F, Fuchs D. Food preservatives sodium benzoate and propionic acid and colorant curcumin suppress Th1-type immune response in vitro. Food Chem Toxicol. 2010; 48(7):1950-6.
  29. Pongsavee M. Effect of sodium benzoate preservative on micronucleus induction, chromosome break, and Ala40Thr superoxide dismutase gene mutation in lymphocytes. Biomed Res Int. 2015; 2015:103512.
  30. Gaur H, Purushothaman S, Pullaguri N, Bhargava Y, Bhargava A. Sodium benzoate induced developmental defects, oxidative stress and anxiety-like behaviour in zebrafish larva. Biochem Biophys Res Commun. 2018; 502(3):364-9.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.