•  
  •  
 

Abstract

The present work was carried out with the development of hybrid polymer electrolytes (HPEs) by using carboxymethyl cellulose (CMC)–polyvinyl alcohol (PVA) doped with different contents of lithium nitrate (LiNO3) for the determination of their structural and conduction properties. The structural analysis was conducted by using Fourier transform infra-red spectroscopy and showed the interaction between the blend host polymer and ionic dopant, which formed via the coordinating site of CMC-PVA and Li+-NO3−. The complexes of CMC-PVA doped LiNO3 led to an increment in ionic conductivity, as observed by electrical impedance spectroscopy, and the sample containing 20 wt% LiNO3 obtained the highest ionic conductivity of 3.54 × 10−3 S cm−1 at room temperature. The ionic conductivity at different temperatures (from 303 K to 343 K) was measured and found to obey the Arrhenius rule. The activation energies of the HPEs were computed based on the Arrhenius equation and were inversely proportional to the ionic conductivity. The highest ionic conducting sample was fabricated into an electrical double layer capacitor (EDLC). Cyclic voltammetry (CV) was used to study the electrochemical performance of the EDLC. A high value of Cs was obtained at 2 mVs−1 due to the utilization of ions in the vacant sites of the electrode material.

Bahasa Abstract

Peningkatan Sifat Listrik CMC-PVA Didoping dengan berbagai Konten LiNO3 sebagai Aplikasi untuk Elektrolit Polimer Hibrid. Karya ini dilakukan dengan pengembangan hibrida polimer elektrolit (HPE) dengan menggunakan karboksimetil selulosa (CMC) -polyvinyl alcohol (PVA) yang diolah dengan berbagai konten lithium nitrat (LiNO3) untuk penentuan sifat struktural dan konduksi mereka. Analisis struktural telah dilakukan dengan menggunakan spektroskopi Fourier Transform Infra-red (FTIR) dan menunjukkan interaksi antara polimer host campuran dan dopan ion telah terjadi melalui situs koordinasi CMC-PVA dan Li+-NO3−. Kompleks CMC-PVA yang didoping LiNO3 menyebabkan peningkatan konduktivitas ionik yang diamati dengan spektroskopi impedansi listrik (EIS) dan ditemukan bahwa sampel yang mengandung 20 wt% LiNO3 memperoleh konduktivitas ionik tertinggi dengan 3.54 × 10−3 S cm −1 pada suhu kamar. Konduktivitas ion pada suhu yang berbeda diukur dari 303 K hingga 343 K dan ditemukan mematuhi aturan Arrhenius. Energi aktivasi HPE dihitung berdasarkan persamaan Arrhenius dan ditunjukkan berbanding terbalik dengan konduktivitas ionik. Sampel konduktivitas ionik tertinggi dibuat menjadi kapasitor listrik lapisan ganda (EDLC). CV digunakan untuk mempelajari kinerja elektrokimia EDLC dan mendapatkan nilai Cs yang tinggi pada 2 mVs−1 karena pemanfaatan ion di situs kosong bahan elektroda.

References

D. Kotatha, Y. Torii, K. Shinomiya, M. Ogino, S. Uchida, M. Ishikawa, T. Furuike, H. Tamura, Int. J. Biol. Macromolecules 124 (2019) 1274.

A.K. Arof, M. Kufian, M. Syukur, M. Aziz, A. Abdelrahman, S.R. Majid, Electroch. Acta. 74 (2012) 39.

A. Yu, V. Chabot, J. Zhang (Ed.), Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications, CRC Press, 2013.

S. Deraman, N. Mohamed, R. Subban, Int. J. Electrochemical Sci. 8/1 (2013) 1459.

J. Li, J. Qiao, K. Lian, Energy Storage Mater. 24 (2019) 6.

X. Fu, T. Li, F. Qi, S. Zhang, J. Wen, W. Shu, P. Luo, R. Zhang, S. Hu, Q. Liu, Appl. Surf. Sci. 507 (2019) 145135.

S. Alipoori, S. Mazinani, S.H. Aboutalebi, F. Sharif, J. Energy Storage 27 (2020) 101072.

R. Singh, A.R. Polu, B. Bhattacharya, H.-W. Rhee, C. Varlikli, P.K. Singh, Renewable Sust. Energy Rev. 65 (2016) 1098.

B. Jinisha, K.M. Anilkumar, M. Manoj, V.S. Pradeep, S. Jayalekshmi, Electroch. Acta. 235 (2017) 210.

R. Agrawal, G. Pandey, J. Phys. D Appl. Phys. 41/22 (2008) 223001.

R. Singh, S. Janakiraman, M. Khalifa, S. Anandhan, S. Ghosh, A. Venimadhav, K. Biswas, J. Electroanalytical Chem. 851 (2019) 113417.

N.F. Mazuki, A.F. Fuzlin, M.A. Saadiah, A.S. Samsudin, Ionics. 25/6 (2018) 2657.

N. Zainuddin, N. Rasali, A. Samsudin, Ionics. 24/10 (2018) 3039.

M.A. Saadiah, D. Zhang, Y. Nagao, S.K. Muzakir, A.S. Samsudin, J. Non-Crystalline Solids. 511 (2019) 201.

M.N. Hafiza, M.I.N. Isa, Research Journal of Recent Sciences 2277 (2014) 2502.

Z. Ahmad, M. Isa, Int. J. Latest Res. Sci. Technol. 1/2 (2012) 70.

J. Durán-Guerrero, M. Martínez-Rodríguez, M. Garza-Navarro, V. González-González, A. Torres-Castro, J. R. De La Rosa, Carbohydrate Polym. 200 (2018) 289.

N.H. Ahmad, M. Isa, Adv. Mater. Res. 1107 (2015) 247.

H. Yang, Y. Liu, L. Kong, L. Kang, F. Ran, J. Power Sources 426 (2019) 47.

M. Shukur,M. Kadir, Electroch. Acta. 158 (2015) 152.

M. Shukur, R. Ithnin, H. Illias, M. Kadir, Opt. Mater. 35/10 (2013) 1834.

Y.A. Salman, O.G. Abdullah, R.R. Hanna, S.B. Aziz, Int. J. Electroch. Sci. 13 (2018) 3185.

M. Shukur, R. Ithnin, M. Kadir, Electroch. Acta 136 (2014) 204.

S. Ibrahim, M.R. Johan, Int. J. Electroch. Sci. 7 (2012) 2596.

B. Choi, Y. Kim, H. Shin, Electroch. Acta 45/8-9 (2000) 1371.

S.B. Aziz, M. Hamsan, M. Brza, M. Kadir, R.T. Abdulwahid, H.O. Ghareeb, H. Woo, Results Phys. 15 (2019) 102584.

R. Hemalatha, M. Alagar, S. Selvasekarapandian, B. Sundaresan, V. Moniha, J. Sci. Adv. Mater. Dev. 4/1 (2019) 101.

F. Hatta, M. Yahya, A. Ali, R. Subban, M. Harun, A. Mohamad, Ionics. 11/5-6 (2005) 418.

F. Di Turo, P. Matricardi, C. Di Meo, F. Mazzei, G. Favero, D. Zane, J. Cult. Heritage 37 (2018) 113.

M. Buraidah, A. Arof, J. Non-Crystalline Solids. 357/16-17 (2011) 3261.

P. Tamilselvi, M. Hema, Phys. B Conden. Ma. 437 (2014) 53.

H. Mallick, A. Sarkar, Bull. Mater. Sci. 23/4 (2000) 319.

S.B. Aziz, T.J. Woo, M.F.Z. Kadir, H.M. Ahmed, J. Sci. Adv. Mater. Dev. 3/1 (2018) 1.

C. Basavaraja, W.J. Kim, D.G. Kim, Mater. Chem. Phys. 129/3 (2011) 787.

S. El-Sayed, K. Mahmoud, A. Fatah, A. Hassen, Phys. B Conden. Ma. 406/21 (2011) 4068.

M.A. Saadiah, A.S. Samsudin, IOP Conf. Ser. Mater. Sci. Eng. 342 (2018) 012045.

N. Mazuki, A.A. Majeed, Y. Nagao, A. Samsudin, Polym. Test. 81 (2020) 106234.

M. Isa, A. Samsudin, Adv. Mater. Res. 802 (2013) 194.

K.H. Kamarudin, M.I.N. Isa, Int. J. Phys. Sci. 8/31 (2013) 1581.

J.-C. Park, T. Ito, K.-O. Kim, K.-W. Kim, B.-S. Kim, M.-S. Khil, H.-Y. Kim, I.-S. Kim, Polym. J. 42/3 (2010) 273.

T. Siddaiah, P. Ojha, N. Gopal, C. Ramu, H. Nagabhushana, J. Sci. Adv. Mater. Devices 3/4 (2018) 456.

S. Rajendran, M. Sivakumar, R. Subadevi, Mater. Lett. 58/5 (2004) 641.

B. Jinisha, A. Femy, M. Ashima, S. Jayalekshmi, Mater. Today Proc. 5/10 (2018) 21189.

A. Alakanandana, A. Subrahmanyam, J.S. Kumar, Mater. Today Proc. 3/10 (2016) 3680.

K. Sundaramahalingam, M. Muthuvinayagam, N. Nallamuthu, D. Vanitha, M. Vahini, Pol. Bull. 76/11 (2019) 5577.

A.M. El Sayed, S. El-Gamal, W.M. Morsi, G.H. Mohammed, J. Mater. Sci. 50/13 (2015) 4717.

M. Shukur, M. Hamsan, M. Kadir, J. Phys. Conf. Ser. 1123 (2018) 012001.

S. Choudhury, S. Stalin, D. Vu, A. Warren, Y. Deng, P. Biswal, L.A. Archer, Nature Commun. 10/1 (2019) 1.

M.R. Asghar, M.T. Anwar, T. Rasheed, A. Naveed, X. Yan, J. Zhang, IOP Conf. Ser. Mater. Sci. Eng. 5 (2019) 7.

J. Piwek, A. Platek, E. Frackowiak, K. Fic, J. Power Sources 438 (2019) 227029.

A. Samsudin, H. Lai, M. Isa, Electroch. Acta 129 (2014) 1.

H. Dai, Y. Huang, H. Huang, Carbohyd. Pol. 185 (2018) 1.

D. Biswal,R. Singh, Carbohyd. Pol. 57/4 (2004) 379.

S. Rajendran, M. Sivakumar, R. Subadevi, J. Power Sources 124/1 (2003) 225.

X. Liu, L. Yu, H. Liu, L. Chen, L. Li, Pol. Degradation Stability 93/1 (2008) 260.

K. Kesavan, C.M. Mathew, S. Rajendran, M. Ulaganathan, Mater. Sci. Eng. B. 184 (2014) 26.

A. Fuzlin, Y. Nagao, I. Misnon, A. Samsudin, Ionics 26 (2020) 1923.

S.B. Aziz, M. Brza, K. Mishra, M. Hamsan, W.O. Karim, R.M. Abdullah, M. Kadir, R.T. Abdulwahid, J. Mater. Res. Technol. 9/2 (2019) 1137.

A.S. Samsudin, M.I.N. Isa, J. Korean Phys. Soc. 65/9 (2014) 1441.

M. Kufian, A. Arof, S. Ramesh, IOP Conf. Ser. Mater. Sci. Eng. 515 (2019) 012010.

D. Teeters, R.G. Neuman, B.D. Tate, Solid State Ionics 85/1-4 (1996) 239.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.