•  
  •  
 

Journal of Materials Exploration and Findings

Abstract

Pure natural rubber (NR) exhibits low mechanical properties, necessitating the incorporation of additives like vulcanizing agents and fillers. Carbon black and silica, conventional fillers, are relatively expensive and not environmentally friendly. This study explores using Oil Palm Empty Fruit Bunch (OPEFB) fiber as an affordable, abundant, and biodegradable alternative filler for NR. However, compatibility issues arise between the nonpolar NR and the polar OPEFB fiber. A latex-starch hybrid coupling agent (CA (NR-St)) was added to the composite formulation to address this. NR, OPEFB fiber, and the coupling agent were mixed using an open roll mill with a 10 phr OPEFB filler loading and coupling agent concentrations of 0, 1, 2, and 3 phr. Fourier-transform infrared spectroscopy (FTIR), rheology, and mechanical property tests revealed that the coupling agent improved the compatibility between NR and OPEFB fibers, as evidenced by increased tensile strength and stiffness. The composite with 3-phr coupling agent exhibited the best performance with tensile strength and stiffness values of 25.6 MPa and 3.7 MPa, respectively. This increase in mechanical properties has the potential to act as a catalyst for increasing the use of renewable materials in the rubber industrial sector, especially the automotive industry.

References

[1] Brüning, K., 2015. Natural Rubber. in Encyclopedia of Polymeric Nanomaterials, K. Kobayashi Shiro and Müllen, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1377–1382.

[2] Vaysse, L., Bonfils, F., Sainte-Beuve, J. and Cartault, M., 2012. Natural Rubber. Polymer Science: A Comprehensive Reference, 10 Volume Set, 10, pp. 281–293.

[3] Vudjung, C., 2016. Cure and mechanical properties of natural rubber filled bacterial cellulose. In Key Engineering Materials (Vol. 705, pp. 40-44). Trans Tech Publications Ltd.

[4] Zou, Y., Sun, Y., He, J., Tang, Z., Zhu, L., Luo, Y. and Liu, F., 2016. Enhancing mechanical properties of styrene–butadiene rubber/silica nanocomposites by in situ interfacial modification with a novel rare-earth complex. Composites Part A: Applied Science and Manufacturing, 87, pp.297-309.

[5] Roy, K., Debnath, S.C. and Potiyaraj, P., 2020. A review on recent trends and future prospects of lignin based green rubber composites. Journal of Polymers and the Environment, 28, pp.367-387.

[6] Fukahori, Y., 2014. Use of natural rubber (NR) for vibration isolation and earthquake protection of structures. In Chemistry, Manufacture and Applications of Natural Rubber (pp. 371-381). Woodhead Publishing.

[7] Nair, A.B. and Joseph, R., 2014. Eco-friendly bio-composites using natural rubber (NR) matrices and natural fiber reinforcements. In Chemistry, manufacture and applications of natural rubber (pp. 249-283). Woodhead Publishing.

[8] Mohamad Aini, N.A., Othman, N., Hussin, M.H., Sahakaro, K. and Hayeemasae, N., 2020. Lignin as alternative reinforcing filler in the rubber industry: a review. Frontiers in Materials, 6, p.329.

[9] Farida, E., Bukit, N., Ginting, E.M. and Bukit, B.F., 2019. The effect of carbon black composition in natural rubber compound. Case Studies in Thermal Engineering, 16, p.100566.

[10] Ahmed, K., Nizami, S.S., Raza, N.Z. and Habib, F., 2013. The effect of silica on the properties of marble sludge filled hybrid natural rubber composites. Journal of King Saud University-Science, 25(4), pp.331-339.

[11] Dhaneswara, D., Agustina, A.S., Adhy, P.D., Delayori, F. and Fatriansyah, J.F., 2018, April. The Effect of Pluronic 123 Surfactant concentration on The N2 Adsorption Capacity of Mesoporous Silica SBA-15: Dubinin-Astakhov Adsorption Isotherm Analysis. In Journal of Physics: Conference Series (Vol. 1011, No. 1, p. 012017). IOP Publishing.

[12] Song, S.H., 2021. Study on silica-based rubber composites with epoxidized natural rubber and solution styrene butadiene rubber. Polymers and Polymer Composites, 29(9), pp.1422-1429.

[13] Thomas, S.K., Parameswaranpillai, J., Krishnasamy, S., Begum, P.S., Nandi, D., Siengchin, S., George, J.J., Hameed, N., Salim, N.V. and Sienkiewicz, N., 2021. A comprehensive review on cellulose, chitin, and starch as fillers in natural rubber biocomposites. Carbohydrate Polymer Technologies and Applications, 2, p.100095.

[14] Moshood, T.D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M.H. and AbdulGhani, A., 2022. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution?. Current Research in Green and Sustainable Chemistry, p.100273.

[15] Fatriansyah, J.F., Surip, S.N., Jaafar, W.N.R.W., Phasa, A., Uyup, M.K.A. and Suhariadi, I., 2022. Isothermal crystallization kinetics and mechanical properties of PLA/Kenaf biocomposite: Comparison between alkaline treated kenaf core and bast reinforcement. Materials Letters, 319, p.132294.

[16] Chalid, M., Husnil, Y.A., Puspitasari, S. and Cifriadi, A., 2020. Experimental and modelling study of the effect of adding starch-modified natural rubber hybrid to the vulcanization of sorghum fibers-filled natural rubber. Polymers, 12(12), p.3017.

[17] Kazemi, H., Mighri, F. and Rodrigue, D., 2022. A Review of Rubber Biocomposites Reinforced with Lignocellulosic Fillers. Journal of Composites Science, 6(7), p.183.

[18] Ramakrishna, G., 2022. Oil Palm Empty Fruit Bunch Fiber Surface Morphology, Treatment, And Suitability As Reinforcement In Cement Composites: A State Of The Art Review. Cleaner Materials, p.100144.

[19] Nagatani, A., 2017. Characteristics & applications of cellulose nanofiber reinforced rubber composites. International Polymer Science and Technology, 44(7), pp.1-8.

[20] Phinyocheep, P., 2014. Chemical modification of natural rubber (NR) for improved performance. In Chemistry, manufacture and applications of natural rubber (pp. 68-118). Woodhead Publishing.

[21] Hakimi, N.M.F., Lee, S.H., Lum, W.C., Mohamad, S.F., Osman Al Edrus, S.S., Park, B.D. and Azmi, A., 2021. Surface modified nanocellulose and its reinforcement in natural rubber matrix nanocomposites: A review. Polymers, 13(19), p.3241.

[22] Handayani, H., Cifriadi, A., Handayani, A.S., Chalid, M., Savetlana, S. and Christwardana, M., 2019, November. Effect of NR-g-cellulose coupling agent into NR-cellulose composite dispersibility and its physical properties. In IOP Conference Series: Materials Science and Engineering (Vol. 703, No. 1, p. 012007). IOP Publishing.

[23] Widiani, K., 2019. Pengaruh Variabel Proses Elektrolisis Plasma Terhadap Sintesis Lateks Hibrida Dengan Larutan Elektrolit Na2SO4. Universitas Indonesia.

[24] Potivara, K. and Phisalaphong, M., 2019. Development and characterization of bacterial cellulose reinforced with natural rubber. Materials, 12(14), p.2323.

[25] Phomrak, S. and Phisalaphong, M., 2020. Lactic acid modified natural rubber–bacterial cellulose composites. Applied Sciences, 10(10), p.3583.

[26] Ismail, H., Othman, N. and Komethi, M., 2012. Curing characteristics and mechanical properties of rattan‐powder‐filled natural rubber composites as a function of filler loading and silane coupling agent. Journal of applied polymer science, 123(5), pp.2805-2811.

[27] Zhou, Y., Fan, M., Chen, L. and Zhuang, J., 2015. Lignocellulosic fibre mediated rubber composites: An overview. Composites Part B: Engineering, 76, pp.180-191.

[28] Osman, H., Ismail, H. and Mustapha, M., 2010. Effects of maleic anhydride polypropylene on tensile, water absorption, and morphological properties of recycled newspaper filled polypropylene/natural rubber composites. Journal of Composite Materials, 44(12), pp.1477-1491.

[29] Wang, J., Wu, W., Wang, W. and Zhang, J., 2011. Effect of a coupling agent on the properties of hemp‐hurd‐powder‐filled styrene–butadiene rubber. Journal of Applied Polymer Science, 121(2), pp.681-689.

[30] Mousa, A., Heinrich, G. and Wagenknecht, U., 2012. Rubber-wood composites from chemically modified olive husk powder and carboxylated nitrile butadiene rubber: cure characteristics, tensile behavior, and morphological studies. Journal of Wood Chemistry and Technology, 32(1), pp.82-92.

[31] Putri, P.S.W., 2019. Pengaruh Komposisi Serat Tandan Kosong Kelapa Sawit (TKKS) dan coupling agent berbasis hibrida poliisoprena-pati terhadap Sifat Mekanik Komposit Karet Alam-Serat TKKS. Universitas Indonesia.

[32] Attharangsan, S. and Saikrasun, S., 2021. Corn cob powder (CCP) Filled Natural Rubber (NR) composites with Si69 as coupling agent: effect of Si69 content on properties of the composites. International Journal of Science and Innovative Technology, 4(1), pp.59-69.

[33] Prasetya, H.A. and Marlina, P., 2021. Pengaruh Si-69 terhadap Karakteristik Vulkanisat Karet Alam dengan Bahan Pengisi Silika. Jurnal Dinamika Penelitian Industri, 32(2), pp.127-133.

[34] Ma, Y.Z., Sobernheim, D. and Garzon, J.R., 2016. Glossary for Unconventional Oil and Gas Resource Evaluation and Development. In Unconventional oil and gas resources handbook (pp. 513-526). Gulf Professional Publishing.

[35] Thomas, M.G., Abraham, E., Jyotishkumar, P., Maria, H.J., Pothen, L.A. and Thomas, S., 2015. Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization. International journal of biological macromolecules, 81, pp.768-777.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.