Abstract
Investment is one of the main pillars in encouraging economic growth in a region. The city of Surabaya, as one of the second largest cities in Indonesia, is an attractive investment destination for many investors. This research aims to map investment potential in the Surabaya City area to support regional economic development by directing investment opportunities in Surabaya City areas with high growth prospects. This research method uses 3 analytical methods to model the spatial pattern of investment in the city of Surabaya, namely the Entropy Weight Method (EWM), Moran’s I and Regional classification. Results show significant variation, with some areas identified as Hot Spots and Sub Hot Spots, indicating high investment potential, while other areas are categorized as Cold Spots and Sub Cold Spots, indicating low investment potential. Several sub-districts are also categorized as Not Significant, indicating areas with lower investment potential or that have not yet become the main focus.
Bahasa Abstract
Investasi merupakan salah satu pilar utama dalam mendorong pertumbuhan ekonomi suatu wilayah. Surabaya, sebagai salah satu kota terbesar kedua di Indonesia, menjadi tujuan investasi yang menarik bagi banyak investor. Penelitian ini bertujuan untuk memetakan potensi investasi di wilayah Kota Surabaya untuk mendukung pengembangan ekonomi daerah dengan mengarahkan adanya peluang investasi di wilayah-wilayah Kota Surabaya dengan prospek pertumbuhan tinggi. Metode penelitian ini menggunakan tiga metode analisis untuk memodelkan pola spasial investasi di Kota Surabaya, yaitu Entropy Weight Method (EWM), Moran’s I, dan klasifikasi wilayah. Hasil menunjukkan variasi signifikan, dengan beberapa area teridentifikasi sebagai hot spot dan sub hot spot, menandakan potensi investasi tinggi, sementara area lain dikategorikan sebagai cold spot dan sub cold spot, mengindikasikan potensi investasi rendah. Beberapa kecamatan juga dikategorikan sebagai Not Significant menunjukkan area dengan potensi investasi yang lebih rendah atau belum menjadi fokus utama.
References
[1] Akbar, M. I. F., Aksa, K., Yahya, I., & Anggraini, N. (2023). Pemetaan Potensi wilayah sebagai peluang investasi dalam pengembangan ekonomi di Kabupaten Luwu Timur. Journal of Urban Planning Studies, 3(2), 184-192. doi: https://doi.org/10.35965/jups.v3i2.374.
[2] Badan Pusat Statistik Kota Surabaya. (2023). Produk Domestik Regional Bruto atas dasar harga berlaku menurut lapangan usaha di Kota Surabaya (miliar rupiah), 2023. Badan Pusat Statistik. Diakses 10 Juli 2024 dari https://surabayakota.bps.go.id/id/statistics-table/3/UzFSTVVXUlliME5XYzBZNUwwNVFRa3h6Y1d3M1p6MDkjMw==/produk-domestik-regional-bruto-atas-dasarharga-berlaku-menurut-lapangan-usaha--lt-sup-gt----lt--sup-gt--di-kota-surabaya--miliar-rupiah---2023.html?year=2023.
[3] Bruneckiene, J., Jucevicius, R., Zykiene, I., Rapsikevicius, J., & Lukauskas, M. (2019). Assessment of investment attractiveness in European countries by artificial neural networks: What competences are needed to make a decision on collective well-being?. Sustainability, 11(24), 6892. doi: https://doi.org/10.3390/su11246892.
[4] DPM-PTSP Kota Surabaya. (2023). Investasi Surabaya 2023. Dinas Penanaman Modal dan Pelayanan Terpadu Satu Pintu Kota Surabaya. Diakses 10 Juli 2024 dari https://dpm-ptsp.surabaya.go.id/data-investasi/page/.
[5] Elsasser, P., Altenbrunn, K., Köthke, M., Lorenz, M., & Meyerhoff, J. (2021). Spatial distribution of forest ecosystem service benefits in Germany: A multiple benefit-transfer model. Forests, 12(2), 169. doi: https:// doi.org/10.3390/f12020169.
[6] Faisal, Y. A., Gunawan, I., Cupian, Hayati, A., Apriliadi, A., & Fajri, M. (2023). Examining the purchase intentions of Indonesian investors for green sukuk. Sustainability, 15(9), 7430. doi: https://doi.org/10.3390/su15097430.
[7] Friedmann, J. (1966). Regional development policy: A case study of Venezuela. MIT Press.
[8] Isard,W. (1960). Methods of regional analysis: An introduction to regional science. The MIT Press.
[9] Jia, A., Liang, X., Wen, X., Yun, X., Ren, L., & Yun, Y. (2023). GIS-based analysis of the spatial distribution and influencing factors of traditional villages in Hebei Province, China. Sustainability, 15(11), 9089. doi: https://doi.org/10.3390/su15119089.
[10] Liu, H., & Ma, L. (2020). Spatial pattern and effects of urban coordinated development in China’s urbanization. Sustainability, 12(6), 2389. doi: https://doi.org/10.3390/su12062389.
[11] Lu, Z., & Zhang, Z. (2023). Dynamics of territorial spatial pattern and landscape impact under different economic gradients: A case study of the Beijing-Tianjin-Hebei (BTH) Region, China. Sustainability, 15(1), 259. doi: https://doi.org/10.3390/su15010259.
[12] Lv, D., Gao, H., & Zhang, Y. (2021). Rural economic development based on shift-share analysis in a developing country: A case study in Heilongjiang Province, China. Sustainability, 13(4), 1969. doi: https://doi.org/10.3390/su13041969.
[13] Perroux, F. (1970). Note on the concept of growth poles. In: McKee, D. L., Dean, R. D., & Leahy, W. H. (eds.), Regional economics: theory and practice (pp. 93-104). Free Press.
[14] Safitri, H. Y., Budisusanto, Y.,Wahyu, U., & Dediyono, A. (2016). Analisis pengaruh lokasi central business district terhadap nilai tanah di daerah sekitarnya (Studi kasus: Daerah industri di Surabaya). Jurnal Teknik ITS, 5(2), A744- A749.
[15] Samuelson, P. A., & Nordhaus, W. D. (2010). Economics (19th edition). Tata McGraw-Hill Education.
[16] Sotnyk, I., Kurbatova, T., Romaniuk, Y., Prokopenko, O., Gonchar, V., Sayenko, Y., ... & Sapi ´ nski, A. (2022). Determining the optimal directions of investment in regional renewable energy development. Energies, 15(10), 3646. doi: https://doi.org/10.3390/en15103646.
[17] Sukirno, S. (2004). Makroekonomi: Teori pengantar (Edisi Ketiga). PT RajaGrafindo Persada.
[18] Sumodiningrat, G. (2001). Responsi pemerintah terhadap kesenjangan ekonomi: Studi empiris pada kebijaksanaan dan program pembangunan dalam rangka pemberdayaan masyarakat di Indonesia. PerPod.
[19] Ufitri, A. N., & Puspitasari, A. Y. (2022). Analisis sektor ekonomi potensial sebagai arahan pembangunan ekonomi wilayah. Jurnal Kajian Ruang, 2(2), 134-153. doi: http://dx.doi.org/10.30659/jkr.v2i2.20962.
[20] Wahed, M., & Primandhana,W. P. (2020). Strategi percepatan investasi Kota Surabaya. Jurnal Economic Resource, 3(1), 147-162.
[21] Wang, Q., Yuan, X., Zhang, J., Gao, Y., Hong, J., Zuo, J., & Liu, W. (2015). Assessment of the sustainable development capacity with the entropy weight coefficient method. Sustainability, 7(10), 13542-13563. doi: https://doi.org/10.3390/su71013542.
[22] Wei, G., Sun, P., Zhang, Z., & Ouyang, X. (2020). The coordinated relationship between investment potential and economic development and its driving mechanism: A case study of the African region. Sustainability, 12(1), 442. doi: https://doi.org/10.3390/su12010442.
[23] Yamada, H. (2024). A new perspective on Moran’s coefficient: Revisited. Mathematics, 12(2), 253. doi: https://doi.org/10.3390/math12020253.
[24] Zhang, L., Wang, X., Qu, W., Zhang, A., Wahia, H., Gao, X., ... & Zhou, C. (2022). Evaluation of dual-frequency multi-angle ultrasound on physicochemical properties of tofu gel and its finished product by TOPSIS-entropy weight method. Ultrasonics Sonochemistry, 90, 106196. doi: https://doi.org/10.1016/j.ultsonch.2022.106196.
[25] Zhou, B., Qi, X., Hou, X., Chen, Z., & Wu, J. (2023). Identification and spatial correlation of imported timber landing processing industrial clusters in Heilongjiang Province of China. Sustainability, 15(6), 5061. doi: https://doi.org/10.3390/su15065061.
[26] Zhu, Y., Tian, D., & Yan, F. (2020). Effectiveness of entropy weight method in decision-making. Mathematical Problems in Engineering, 2020, 3564835. doi: https://doi.org/10.1155/2020/3564835.
Recommended Citation
Jelita, Jelita and Kistanti, Nurjannah Rahayu
(2025)
"Pemetaan Sektor Potensial Penunjang Investasi di Kota Surabaya Berbasis Analisis Spasial,"
Jurnal Ekonomi dan Pembangunan Indonesia: Vol. 25:
No.
1, Article 9.
DOI: 10.7454/jepi.v25i1.1727
Available at:
https://scholarhub.ui.ac.id/jepi/vol25/iss1/9