•  
  •  
 

Abstract

In the last decade, poverty patterns in Banten Province have tended to increase. There have been many poverty alleviation programs provided by governments at all levels that focus on education, social security, and so on. This research aims to examine the role of education, internet use, and internet access on poverty in Banten. Using static and robust panel analysis shows that education contributes significantly to poverty reduction in Banten’s districts/municipalities, as does the use of the internet for information/news and social media. On the contrary, internet access harmed on regency/municipality poverty in Banten. This research contributed to providing academic information about the importance of education in reducing poverty.

Bahasa Abstract

Dalam satu dekade terakhir, pola kemiskinan di Provinsi Banten cenderung meningkat. Telah banyak program pengentasan kemiskinan yang diberikan oleh pemerintah semua tingkatan yang fokus pada pendidikan, jaminan sosial, dan sebagainya. Penelitian ini bertujuan untuk menguji peran pendidikan dan penggunaan internet terhadap kemiskinan di Banten. Dengan menggunakan analisis panel statis dan robust menunjukkan bahwa pendidikan berkontribusi signifikan dalam penurunan kemiskinan kabupaten/kota di Banten, demikian juga dengan penggunaan internet untuk informasi/berita dan media sosial. Sebaliknya, akses internet memperparah kemiskinan kabupaten/kota di Banten. Penelitian ini berkontribusi dalam memberikan informasi akademik tentang pentingnya pendidikan dalam mengurangi kemiskinan.

References

[1] Abaidoo, A. (2021). The nexus between education and poverty reduction in Ghana from 2013 to 2017. Cogent Social Sciences, 7(1), 1986933. doi: https://doi.org/10.1080/23311886.2021.1986933.

[2] Acheampong, A. O., Appiah-Otoo, I., Dzator, J., & Agyemang, K. K. (2021). Remittances, financial development and poverty reduction in Sub-Saharan Africa: Implications for post-COVID-19 macroeconomic policies. Journal of Policy Modeling, 43(6), 1365-1387. doi: https://doi.org/10.1016/j.jpolmod.2021.09.005.

[3] Aghion, P., Boustan, L., Hoxby, C., & Vandenbussche, J. (2009). The causal impact of education on economic growth: Evidence from U.S. Harvard University. Diakses 27 Agustus 2022 dari https://scholar.harvard.edu/files/aghion/ files/causal_impact_of_education.pdf.

[4] Aker, J. C., Ghosh, I., & Burrell, J. (2016). The promise (and pitfalls) of ICT for agriculture initiatives. Agricultural Economics, 47(S1), 35-48. doi: https://doi.org/10.1111/agec.12301.

[5] Akerman, A., Gaarder, I., & Mogstad, M. (2015). The skill complementarity of broadband internet. The Quarterly Journal of Economics, 130(4), 1781-1824. doi: https://doi.org/10.1093/qje/qjv028.

[6] Alimi, A. S., & Okunade, S. O. (2020). Financial inclusion, ICT diffusion and poverty reduction: Evidence from Sub- Sahara African countries. Asian Journal of Economics and Business, 1(2), 139-152.

[7] Anderson, E., d’Orey, M. A. J., Duvendack, M.,&Esposito, L. (2018). Does government spending affect income poverty? A meta-regression analysis. World Development, 103, 60-71. doi: https://doi.org/10.1016/j.worlddev.2017.10.006.

[8] Andrianarison, F. (2022). Unravelling the linkage between food security, poverty reduction, and education for sustainable development. The Journal of Development Studies, 58(11), 2198-2221. doi: https://doi.org/10.1080/00220388.2022.2096445.

[9] Asongu, S. A., & Odhiambo, N. M. (2019). Enhancing ICT for quality education in sub-Saharan Africa. Education and Information Technologies, 24(5), 2823-2839. doi: https://doi.org/10.1007/s10639-019-09880-9.

[10] Azzasyofia, M., & Adi, I. R. (2017). Pembangunan sosial pedesaan melalui pemanfaatan teknologi informasi dan komunikasi (TIK). Jurnal Ilmu Kesejahteraan Sosial, 18(2), 139-149. doi: https://doi.org/10.7454/jurnalkessos.v18i2.106.

[11] Baltagi, B. H. (2005). Econometric analysis of panel data (3rd edition). John Wiley & Sons Ltd.

[12] Barro, R. J., & Lee, J.W. (1993). International comparisons of educational attainment. Journal of Monetary Economics, 32(3), 363-394. doi: https://doi.org/10.1016/0304-3932(93)90023-9.

[13] Becker, G. S. (1995). Human capital and poverty alleviation. Human Resources Development and Operations Working Papers, HROWP 52. World Bank. Diakses 12 Januari 2023 dari https://documents1.worldbank.org/curated/en/121791468764735830/pdf/multi0page.pdf.

[14] Beuermann, D. W., McKelvey, C., & Vakis, R. (2012). Mobile phones and economic development in rural Peru. The Journal of Development Studies, 48(11), 1617-1628. doi: https://doi.org/10.1080/00220388.2012.709615.

[15] Bilenkisi, F., Gungor, M. S., & Tapsin, G. (2015). The impact of household heads’ education levels on the poverty risk: The evidence from Turkey. Educational Sciences: Theory and Practice, 15(2), 337-348.

[16] Boussetta, A. (2022). Microfinance, poverty, and education. Comparative Economic Studies, 64(1), 86-108. doi: https://doi.org/10.1057/s41294-021-00145-4.

[17] BPS. (2022). Statistik Indonesia 2022. Badan Pusat Statistik. Diakses 16 Oktober 2023 dari https://www.bps.go.id/id/publication/2022/02/25/0a2afea4fab72a5d052cb315/statistik-indonesia-2022.html.

[18] BPS Provinsi Banten. (2022). Provinsi Banten dalam angka 2022. Badan Pusat Statistik Provinsi Banten. Diakses 18 September 2022 dari https://banten.bps.go.id/publication/2022/02/25/19658ae14140f17fc6ae9e3a/provinsi-banten-dalam-angka-2022.html.

[19] BPS Provinsi Banten. (2023a). Provinsi Banten dalam angka 2023. Badan Pusat Statistik Provinsi Banten. Diakses 30 Juni 2023 dari https://banten.bps.go.id/publication/2023/02/28/482ee839483674f34dd96faf/provinsi-banten-dalam-angka-2023.html.

[20] BPS Provinsi Banten. (2023b). Statistik kesejahteraan rakyat Provinsi Banten 2023. Badan Pusat Statistik Provinsi Banten. Diakses 6 Desember 2023 dari https://banten.bps.go.id/publication/2023/12/28/a08aa2b939618550aadd47cf/statistik-kesejahteraan-rakyat-provinsi-banten-2023.html.

[21] Brunello, G., Fort, M., & Weber, G. (2009). Changes in compulsory schooling, education and the distribution of wages in Europe. The Economic Journal, 119(536), 516-539. doi: https://doi.org/10.1111/j.1468-0297.2008.02244.x.

[22] Budiono, S., & Purba, J. T. (2022). Reducing poverty strategy through educational participation, clean water, and sanitation in Indonesia. Jurnal Ekonomi dan Bisnis, 25(1), 177-198. doi: https://doi.org/10.24914/jeb.v25i1.4158.

[23] Bursac, Z., Gauss, C. H., Williams, D. K., & Hosmer, D. W. (2008). Purposeful selection of variables in logistic regression. Source Code for Biology and Medicine, 3(1), 17. doi: https://doi.org/10.1186/1751-0473-3-17.

[24] Cáceres, R. B. (2007). Digital poverty: Concept and measurement, with an application to Peru. Working Paper, 337. Kellogg Institute For International Studies. Diakses 20 Desember 2023 dari https://kellogg.nd.edu/documents/1645.

[25] Camacho, A., & Conover, E. (2011). The impact of receiving price and climate information in the agricultural sector. IDB Working Paper Series, IDB-WP-220. http://dx.doi.org/10.18235/0011202.

[26] Chotia, V., & Rao, N. V. M. (2017a). An empirical investigation of the link between infrastructure development and poverty reduction. International Journal of Social Economics, 44(12), 1906-1918. doi: https://doi.org/10.1108/IJSE-06-2016- 0154.

[27] Chotia, V., & Rao, N. V. M. (2017b). Investigating the interlinkages between infrastructure development, poverty and rural–urban income inequality: Evidence from BRICS nations. Studies in Economics and Finance, 34(4), 466-484. doi: https://doi.org/10.1108/SEF-07-2016-0159.

[28] Cocosila, M., & Archer, N. (2010). Adoption of mobile ICT for health promotion: An empirical investigation. Electronic Markets, 20(3), 241-250. doi: https://doi.org/10.1007/s12525- 010-0042-y.

[29] Deganis, I., Haghian, P. Z., & Tagashira, M. (2021). Leveraging digital technologies for social inclusion. UN/DESA Policy Brief, 92. Department of Economic and Social Affairs - United Nation. Diakses 18 Desember 2023 dari https://www.un.org/development/desa/dpad/publication/un-desa-policy-brief-92-leveraging-digital-technologiesfor-social-inclusion/.

[30] Deng, X., Peng, J., & Wan, C. (2024). The impact of internet use on land productivity: Evidence from China land economy survey. Land, 13(2), 262. doi: https://doi.org/10.3390/land13020262.

[31] Doong, S. H., & Ho, S. C. (2012). The impact of ICT development on the global digital divide. Electronic Commerce Research and Applications, 11(5), 518-533. doi: https://doi.org/10.1016/j.elerap.2012.02.002.

[32] Dutta, O., & Chye, S. Y. L. (2017). Internet use and psychological wellbeing: A study of international students in Singapore. Journal of International Students, 7(3), 825-840. doi: https://doi.org/10.5281/zenodo.570036.

[33] Evans, D., Chaix, B., Lobbedez, T., Verger, C., & Flahault, A. (2012). Combining directed acyclic graphs and the changein- estimate procedure as a novel approach to adjustmentvariable selection in epidemiology. BMC Medical Research Methodology, 12(1), 156. doi: https://doi.org/10.1186/1471- 2288-12-156.

[34] Fagbemi, F., Osinubi, T. T., & Adeosun, O. A. (2022). Enhancing sustainable infrastructure development: A boon to poverty reduction in Nigeria. World Development Sustainability, 1, 100006. doi: https://doi.org/10.1016/j.wds.2022.100006.

[35] Fernandes, A. M., Mattoo, A., Nguyen, H., & Schiffbauer, M. (2019). The internet and Chinese exports in the pre-ali baba era. Journal of Development Economics, 138, 57-76. doi: https://doi.org/10.1016/j.jdeveco.2018.11.003.

[36] Flanagin, A. J., & Metzger, M. J. (2001). Internet use in the contemporary media environment. Human Communication Research, 27(1), 153-181. doi: https://doi.org/10.1111/j.1468- 2958.2001.tb00779.x.

[37] Foster, J., Greer, J., & Thorbecke, E. (2010). The Foster–Greer–Thorbecke (FGT) poverty measures: 25 years later. The Journal of Economic Inequality, 8(4), 491-524. doi: https://doi.org/10.1007/s10888-010-9136-1.

[38] Fox, J., & Weisberg, S. (2011). An R companion to applied regression (2nd edition). Sage publications.

[39] Galperin, H., Mariscal, J., & Barrantes, R. (2014). Internet and poverty: Opening the black box. Diálogo Regional sobre la Sociedad de la Información (DIRSI). Diakses 18 Desember 2023 dari https://dirsi.net/web/files/files/Opening_the_Black_Box.pdf.

[40] Galperin, H., & Viecens, M. F. (2017). Connected for development? Theory and evidence about the impact of internet technologies on poverty alleviation. Development Policy Review, 35(3), 315-336. doi: https://doi.org/10.1111/dpr.12210.

[41] García-Mora, F., & Mora-Rivera, J. (2023). Exploring the impacts of internet access on poverty: A regional analysis of rural Mexico. New Media & Society, 25(1), 26-49. doi: https://doi.org/10.1177/14614448211000650.

[42] Ge, Y., Zhu, Y., Zhang, W., & Kong, X. (2023). Can infrastucture development alleviate multidimensional poverty? – Evidence from China. The Singapore Economic Review, 68(4), 1393-1426. doi: https://doi.org/10.1142/S0217590821440021.

[43] Ghaly, S. B.,&Serag, S. H. (2023). Digitalization and poverty alleviation in MENA countries: A dynamic panel analysis. Journal of Political & Economic Studies, 3(1), 335-379. doi: https://doi.org/10.21608/psej.2023.180645.1046.

[44] Gounder, R., & Xing, Z. (2012). Impact of education and health on poverty reduction: Monetary and non-monetary evidence from Fiji. Economic Modelling, 29(3), 787-794. doi: https://doi.org/10.1016/j.econmod.2012.01.018.

[45] Greenland, S., & Pearce, N. (2015). Statistical foundations for model-based adjustments. Annual Review of Public Health, 36, 89-108. doi: https://doi.org/10.1146/annurev-publhealth- 031914-122559.

[46] Gu, R., Zhang, W., Chen, K., & Nie, F. (2023). Can information and communication technologies contribute to poverty reduction? Evidence from poor counties in China. Information Technology for Development, 29(1), 128-150. doi: https://doi.org/10.1080/02681102.2022.2123772.

[47] Gujarati, D. N., & Porter, D. C. (2009). Basic econometrics (5th edition). McGraw-hill.

[48] Heinze, G., Wallisch, C., & Dunkler, D. (2018). Variable selection – A review and recommendations for the practicing statistician. Biometrical Journal, 60(3), 431-449. doi: https://doi.org/10.1002/bimj.201700067.

[49] Hidayat, A., Prasetya, F., & Pangestuty, F. W. (2021). Role of internet accessibility in reducing the poverty rates in Java: A spatial approach. Journal of Indonesian Applied Economics, 9(1), 21-31. doi: https://doi.org/10.21776/ub.jiae.2021.009.01.3.

[50] Hofmarcher, T. (2021). The effect of education on poverty: A European perspective. Economics of Education Review, 83, 102124. doi: https://doi.org/10.1016/j.econedurev.2021.102124.

[51] Huber, P. J. (1981). Robust statistics. Wiley.

[52] Kanbur, R. (1990). Poverty and the social dimensions of structural adjustment in Côte d’Ivoire. SDA Woking Paper, 8503. Social Dimensions of Adjustment in Sub-Saharan Africa - The World Bank. Diakses 31 Desember 2023 dari https://documents.worldbank.org/en/publication/documents-reports/documentdetail/755521468749752999/ Poverty-and-the-social-dimensions-of-structuraladjustment-in-Cote-dIvoire.

[53] Khaliq, I. H., Naeem, B., Abbas, Q., & Khalid, S. (2017). Contribution of ICT to poverty reduction among women in Kilosa district. Journal of Business & Financial Affairs, 6(1), 238. https://doi.org/10.4172/2167-0234.1000238.

[54] Khusaini, K. (2017). Analisis ketimpangan pendidikan di Banten (Disertasi, Universitas Padjadjaran).

[55] Khusaini, K., Remi, S. S., Fahmi, M.,&Purnagunawan, R. M. (2020). Measuring the inequality in education: Educational Kuznets curve. Jurnal Ekonomi Malaysia, 54(3), 59-76. doi: http://dx.doi.org/10.17576/JEM-2020-5403-5.

[56] Khusaini, K., Ramdani, H. C., Syamiya, E. N., & Aisyah, I. (2022). Does the government expenditure on education and family income boost educational expansion?: Lesson from panel FMOLS. Review of Applied Socio-Economic Research, 24(2), 89-105. doi: https://doi.org/10.54609/reaser.v24i2.140.

[57] Klonner, S., & Nolen, P. (2010). Does ICT Benefit the Poor? Evidence from South Africa. Conference Paper, TIPS/DPRU forum 2010: the global Economic Crisis and South Africa – Lessons in Long-Run Economic Growth and Development, Trade & Industrial Policy Strategies (TIPS), 27-29 October 2010, Johannesburg, South Africa. Diakses 31 Desember 2023 dari https://www.tips.org.za/research-archive/annual-forum-papers/2010/item/2869-does-ict-benefit-the-poor-evidence-from-south-africa.

[58] Li, X., Guo, H., Jin, S., Ma,W., & Zeng, Y. (2021). Do farmers gain internet dividends from E-commerce adoption? Evidence from China. Food Policy, 101, 102024. doi: https://doi.org/10.1016/j.foodpol.2021.102024.

[59] Lin, J., Yu, Z.,Wei, Y. D., &Wang, M. (2017). Internet access, spillover and regional development in China. Sustainability, 9(6), 946. doi: https://doi.org/10.3390/su9060946.

[60] Liu, F., Li, L., Zhang, Y. Q., Ngo, Q. T., & Iqbal, W. (2021). Retracted article: Role of education in poverty reduction: macroeconomic and social determinants form developing economies. Environmental Science and Pollution Research, 28(44), 63163-63177. doi: https://doi.org/10.1007/s11356-021-15252-z.

[61] Liu,W., Xiao,W., Li, Y., & Westlund, H. (2024). How internet access impacts rural households’ income in China: evidence from the China family panel survey. Applied Economics, 1-16. doi: https://doi.org/10.1080/00036846.2024.2331423.

[62] Mallek, R. S., Awad, A., Ozturk, I., & ben Douissa, I. (2024). Infrastructure development and poverty eradication in sub- Saharan Africa; Its effect and transmission channels. Cities, 144, 104658. doi: https://doi.org/10.1016/j.cities.2023.104658.

[63] Mantel, N. (1970). Why stepdown procedures in variable selection. Technometrics, 12(3), 621-625. doi: https://doi.org/10.1080/00401706.1970.10488701.

[64] Maulana, A., Satriawan, E., & Pradana, A. T. (2020). The effect of educational expansion on household labor allocation and earning: Evidence from rural Indonesia. TNP2K Working Paper, 58-e. Tim Nasional Percepatan Penanggulangan Kemiskinan. Diakses 11 Januari 2023 dari https://www.tnp2k.go.id/downloads/ the-effect-of-educational-expansion-on-household-laborallocation- and-earning-evidence-from-rural-indonesia.

[65] May, J., Dutton, V., & Munyakazi, L. (2014). Information and communication technologies as a pathway from poverty: Evidence from East Africa. In: Adera, E. O., Waema, T. M., May, J., Mascarenhas, O., & Diga, K. (eds.), ICT pathways to poverty reduction: Empirical evidence from East and Southern Africa (pp. 33-52), Practical Action Publishing.

[66] Mdluli, P., & Dunga, S. (2022). Determinants of poverty in South Africa using the 2018 general household survey data. Journal of Poverty, 26(3), 197-213. doi: https://doi.org/10.1080/10875549.2021.1910100.

[67] Medeiros, M., Barbosa, R. J., & Carvalhaes, F. (2020). Educational expansion, inequality and poverty reduction in Brazil: A simulation study. Research in Social Stratification and Mobility, 66, 100458. doi: https://doi.org/10.1016/j.rssm.2019.100458.

[68] Meilvidiri, W., Jafar, R., Asrudi, A., Syahruddin, S., Nahumury, M. A. I., & Akbar, M. (2020). The development of infrastructure and the level of poverty in the eastern part of Indonesia. IOP Conference Series: Earth and Environmental Science, 473, 012134. doi: https://doi.org/10.1088/1755- 1315/473/1/012134.

[69] Meka’a, C. B., Fotso, S. R., & Kamdem, B. R. G. (2024). Investments in basic public infrastructure and their effects on economic growth in a developing country: The case of Cameroon. Heliyon, 10(4), e26504. doi: https://doi.org/10.1016/j.heliyon.2024.e26504.

[70] Meng, Y., Lu, Y., & Liang, X. (2024). Does internet use alleviate the relative poverty of Chinese rural residents? A case from China. Environment, Development and Sustainability, 26(5), 11817-11846. doi: https://doi.org/10.1007/s10668-023- 03531-3.

[71] Mora-Rivera, J., & García-Mora, F. (2021). Internet access and poverty reduction: Evidence from rural and urban Mexico. Telecommunications Policy, 45(2), 102076. doi: https://doi.org/10.1016/j.telpol.2020.102076.

[72] Mustofa, M., Sugiyanto, C., & Susamto, A. A. (2023). Analysis of the impact of the Raskin program on food security for poor households in Indonesia. Jurnal Economia, 19(1), 127-140. doi: https://doi.org/10.21831/economia.v19i1.58937.

[73] Nguyen, T. T., Nguyen, T. T., & Grote, U. (2022). Internet use, natural resource extraction and poverty reduction in rural Thailand. Ecological Economics, 196, 107417. doi: https://doi.org/10.1016/j.ecolecon.2022.107417.

[74] Nisa, K., & Budiarti, W. (2019). Pengaruh teknologi informasi dan komunikasi terhadap tingkat kemiskinan di Indonesia tahun 2012-2017. Seminar Nasional Official Statistics, 2019(1), 759-768. doi: https://doi.org/10.34123/semnasoffstat.v2019i1.186.

[75] Noja, G. G., Cristea, M., Sîrghi, N., & Vadasan, I. (2022). The role of digitalisation in reducing risks and bridging regional economic welfare gaps within a sustainable development framework: The case of Romania. In: Grima, S., Özen, E. & Romanova, I. (eds.), Managing risk and decision making in times of economic distress, Part B (Contemporary Studies in Economic and Financial Analysis, vol. 108B) (pp. 131-142), Emerald Publishing Limited, Leeds. doi: https://doi.org/10.1108/S1569-37592022000108B037.

[76] Nugraha, A. T., Prayitno, G., Nandhiko, L., & Nasution, A. R. (2022). Socioeconomic conditions on poverty levels a case study: Central Java Province and Yogyakarta in 2016. Revista de Economia e Sociologia Rural, 60, e233206. doi: https://doi.org/10.1590/1806-9479.2021.233206.

[77] Oreopoulos, P. (2007). Do dropouts drop out too soon? Wealth, health and happiness from compulsory schooling. Journal of Public Economics, 91(11-12), 2213–2229. doi: https://doi.org/10.1016/j.jpubeco.2007.02.002.

[78] Oreopoulos, P., & Salvanes, K. G. (2011). Priceless: The nonpecuniary benefits of schooling. Journal of Economic Perspectives, 25(1), 159-184. doi: https://doi.org/10.1257/jep.25.1.159.

[79] Oyebanjo, O., Idowu, A. O., Fadipe, M. O., & Sebiomo, A. A. (2021). Assessment of poverty severity and its determinants among rural farm households in Southwest, Nigeria. KIU Journal of Humanities, 6(1), 7-16.

[80] Padli, J., Ahmat, N. B., & Nawawi, M. N. (2019). The impact of natural disasters, technological change and education on poverty rate: Evidence from developing countries. Jurnal Ekonomi Malaysia, 53(2), 21-28. doi: https://doi.org/10.17576/JEM-2019-5302-2.

[81] Pervez, S. (2014). Impact of education on poverty reduction: A co-integration analysis for Pakistan. Journal of Research in Economics and International Finance, 3(4), 83-89.

[82] Purba, J. T., Budiono, S., Hariandja, E. S., & Pramono, R. (2023). Sustainability strategy to alleviate poverty through education, energy, GRDP, and special funds: Evidence from Indonesia. International Journal of Sustainable Development and Planning, 18(5), 1397-1406. doi: https://doi.org/10.18280/ijsdp.180510.

[83] Putri, R. D., Rahman, M. S., Abdillah, A. A., & Huang, W. C. (2024). Improving small-scale fishermen’s subjective well-being in Indonesia: Does the internet use play a role? Heliyon, 10(7), e29076. doi: https://doi.org/10.1016/j.heliyon.2024.e29076.

[84] Qin, X., Wu, H., & Shan, T. (2022). Rural infrastructure and poverty in China. PLoS ONE, 17(6), e0266528. doi: https://doi.org/10.1371/journal.pone.0266528.

[85] Richmond, K., & Triplett, R. E. (2018). ICT and income inequality: A cross-national perspective. International Review of Applied Economics, 32(2), 195-214. doi: https://doi.org/10.1080/02692171.2017.1338677.

[86] Risner, C., & Gadhavi, V. (2015). Using real-time monitoring to enhance graduation from extreme poverty in Bangladesh. IDS Bulletin, 46(2), 115-123. doi: https://doi.org/10.1111/1759- 5436.12134.

[87] Romer, D. (2006). Advanced macroeconomics (3rd edition). McGraw-Hill Companies, Inc.

[88] Rousseeuw, P. J., & Yohai, V. (1984). Robust regression by means of S-estimators. In: Franke, J., Härdle, W., & Martin, D. (eds.), Robust and nonlinear time series analysis [Lecture Notes in Statistics, vol. 26] (pp. 256-272), Springer US. doi: https://doi.org/10.1007/978-1-4615-7821-5_15.

[89] Ryan, T. P. (2008). Modern regression methods (2nd Edition). John Wiley & Sons, Inc.

[90] Sadono, E. D. (2018). Impact evaluation of Raskin program using matching method: Case of IFLS 5. JEJAK: Jurnal Ekonomi dan Kebijakan, 11(1), 207-223. doi: https://doi.org/10.15294/jejak.v11i1.9192.

[91] Salemink, K., Strijker, D., & Bosworth, G. (2017). Rural development in the digital age: A systematic literature review on unequal ICT availability, adoption, and use in rural areas. Journal of Rural Studies, 54, 360-371. doi: https://doi.org/10.1016/j.jrurstud.2015.09.001.

[92] Sen, A. (1982). Poverty and famines: an essay on entitlement and deprivation. OUP Oxford.

[93] Sen, A. (1999). Development as freedom. Oxford University Press.

[94] Sife, A. S., Kiondo, E., & Lyimo-Macha, J. G. (2010). Contribution of mobile phones to rural livelihoods and poverty reduction in Morogoro region, Tanzania. The Electronic Journal of Information Systems in Developing Countries, 42(1), 1-15. doi: https://doi.org/10.1002/j.1681-4835.2010.tb00299.x.

[95] Sugiharti, L., Purwono, R., Esquivias, M. A., & Jayanti, A. D. (2022). Poverty dynamics in Indonesia: The prevalence and causes of chronic poverty. Journal of Population and Social Studies, 30, 423-447. doi: https://doi.org/10.25133/JPSSv302022.025.

[96] Sujarwoto, S., & Tampubolon, G. (2016). Spatial inequality and the internet divide in Indonesia 2010–2012. Telecommunications Policy, 40(7), 602-616. doi: https://doi.org/10.1016/j.telpol.2015.08.008.

[97] Sumargo, B.,&Simanjuntak, N. M. M. (2019). Deprivasi utama kemiskinan multidimensi antarprovinsi di Indonesia. Jurnal Ekonomi dan Pembangunan Indonesia, 19(2), 160-172. doi: https://doi.org/10.21002/jepi.2019.10.

[98] Susanti, Y., Pratiwi, H., Sulistijowati H., S., & Liana, T. (2014). M estimation, S estimation, and MM estimation in robust regression. International Journal of Pure and Applied Mathematics, 91(3), 349-360. doi: https://doi.org/10.12732/ijpam.v91i3.7.

[99] Sutanto,W., Sakaguchi, M., Amrullah, E. R., Rusyiana, A., & Ishida, A. (2020). Accurate targeting in the Indonesian RASKIN program. International Journal of Social Economics, 47(11), 1363-1379. doi: https://doi.org/10.1108/IJSE-03-2020- 0124.

[100] Tambun, J. M. S., & Herawaty, R. (2018). Pemodelan faktorfaktor yang mempengaruhi indeks kedalaman kemiskinan dan indeks keparahan kemiskinan kabupaten/kota di Sumatera Utara menggunakan regresi data panel. Publikauma : Jurnal Administrasi Publik Universitas Medan Area, 6(1), 100-110. doi: https://doi.org/10.31289/publika.v6i1.1574.

[101] Tang, W., & Zhu, J. (2020). Informality and rural industry: Rethinking the impacts of E-Commerce on rural development in China. Journal of Rural Studies, 75, 20-29. doi: https://doi.org/10.1016/j.jrurstud.2020.02.010.

[102] Timilsina, G., Hochman, G., & Song, Z. (2020). Infrastructure, economic growth, and poverty: A review. Policy Research Working Paper, 9258. World Bank. Diakses 21 Januari 2023 dari https://documents.worldbank.org/en/publication/ documents-reports/documentdetail/927361590594380798/ Infrastructure-Economic-Growth-and-Poverty-A-Review.

[103] van Deursen, A. J., & van Dijk, J. A. (2019). The first-level digital divide shifts from inequalities in physical access to inequalities in material access. New Media & Society, 21(2), 354-375. doi: https://doi.org/10.1177/1461444818797082.

[104] Vansteelandt, S., Bekaert, M., & Claeskens, G. (2012). On model selection and model misspecification in causal inference. Statistical Methods in Medical Research, 21(1), 7-30. doi: https://doi.org/10.1177/0962280210387717.

[105] Vatsa, P., Li, J., Luu, P. Q., & Botero-R, J. C. (2023). Internet use and consumption diversity: Evidence from rural China. Review of Development Economics, 27(3), 1287-1308. doi: https://doi.org/10.1111/rode.12935.

[106] Vu, L. H., & Nguyen, T. A. (2021). Elderly poverty in Vietnam: Trends and determinants. Journal of Population and Social Studies, 29, 526-543. doi: https:// doi.org/10.25133/JPSSv292021.033.

[107] Wardhana, A., Kharisma, B., & Lisdiyanti, T. (2020). Teknologi informasi komunikasi dan pertumbuhan ekonomi wilayah Barat dan Timur Indonesia periode 2014-2018. E-Jurnal Ekonomi dan Bisnis Universitas Udayana, 9(11), 1103- 1116. doi: https://doi.org/10.24843/eeb.2020.v09.i11.p05.

[108] Watekhi,W., Hartono, D., & Dewi, R. K. (2011). Analisis kesediaan membayar air bersih dan sanitasi rumah tangga di Indonesia. Jurnal Ekonomi dan Pembangunan Indonesia, 12(1), 1-14. doi: https://doi.org/10.21002/jepi.v12i1.01.

[109] Wedgwood, R. (2007). Education and poverty reduction in Tanzania. International Journal of Educational Development, 27(4), 383-396. doi: https://doi.org/10.1016/j.ijedudev.2006.10.005.

[110] Widiastuti, T. (2014). Kemiskinan struktural informasi. Jurnal Ilmu Komunikasi, 8(3), 314-329.

[111] Widiyastuti, I. (2015). Analisis runtun waktu dalam pengujian pengaruh TIK terhadap penurunan laju kemiskinan di Indonesia. JURNAL IPTEKKOM (Jurnal Ilmu Pengetahuan & Teknologi Informasi), 17(1), 19-30. doi: https://doi.org/10.33164/iptekkom.17.1.2015.19-30.

[112] Xin, Y., Wang, D., Zhang, L., Ma, Y., Chen, X., Wang, H., Wang, H.,Wang, K., Long, H., Chai, H., & Gao, J. (2022). Cooperative analysis of infrastructure perfection and residents’ living standards in poverty-stricken counties in Qinghai Province. Environment, Development and Sustainability, 24(3), 3687-3703. doi: https://doi.org/10.1007/s10668-021-01582-y.

[113] Yang, L., Lu, H.,Wang, S., & Li, M. (2021). Mobile internet use and multidimensional poverty: Evidence from a household survey in rural China. Social Indicators Research, 158(3), 1065-1086. doi: https://doi.org/10.1007/s11205-021-02736-1.

[114] Yin, X., Meng, Z., Yi, X., Wang, Y., & Hua, X. (2021). Are “internet+” tactics the key to poverty alleviation in China’s rural ethnic minority areas? Empirical evidence from Sichuan Province. Financial Innovation, 7(1), 30. doi: https://doi.org/10.1186/s40854-021-00236-2.

[115] Yohai, V. J. (1987). High breakdown-point and high efficiency robust estimates for regression. The Annals of Statistics, 15(2), 642-656. doi: https://doi.org/10.1214/aos/1176350366.

[116] Zhan, Y., & Yang, S. (2024). Does internet use improve employment?——Empirical evidence from China. PLoS ONE, 19(4), e0301465. doi: https://doi.org/10.1371/journal.pone.0301465.

[117] Zhang, J., Cheng, M., & Yu, N. (2020). Internet use and lower life satisfaction: The mediating effect of environmental quality perception. Ecological Economics, 176, 106725. doi: https://doi.org/10.1016/j.ecolecon.2020.106725.

[118] Zhang, S., Liu, Q., Zheng, X., & Sun, J. (2023). Internet use and the poverty vulnerability of rural households: From the perspective of risk response. Sustainability, 15(2), 1289. doi: https://doi.org/10.3390/su15021289.

[119] Zhou, Y., Tong, C., & Wang, Y. (2022). Road construction, economic growth, and poverty alleviation in China. Growth and Change, 53(3), 1306-1332. doi: https://doi.org/10.1111/grow.12617.

[120] Zhou, X., Vatsa, P., & Ma,W. (2023). Impact of internet use on value and diversity of risky financial asset portfolios. The Quarterly Review of Economics and Finance, 89, 188-193. doi: https://doi.org/10.1016/j.qref.2023.03.012.

[121] Zhu, X., & Peng, C. (2022). China’s experience in combating poverty: Culture, education, and guarantee mechanisms. In: Zhu, X., & Peng, C. (eds.), 40 years of China’s war on poverty (pp. 247-291), Palgrave Macmillan. doi: https://doi.org/10.1007/978-981-19-3004-1_6.

[122] Zhu, Q., Zhu, C., Peng, C., & Bai, J. (2022). Can information and communication technologies boost rural households’ income and narrow the rural income disparity in China? China Economic Quarterly International, 2(3), 202-214. doi: https://doi.org/10.1016/j.ceqi.2022.08.003.

Included in

Economics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.