Abstract
This paper examines the development of information technology, total factor productivity (TFP), and urbanization of CO2 gas emissions in Indonesia from 1975–2014. To discuss empirically, this study uses the Autoregressive Distributed Lag (ARDL) model. There are several results in this study. Firstly, the TFP coefficient value in the short term is lower than the long term, so that the Enviromental Kuznets Curve (EKC) hypothesis is not proven. This is one of the causes of rising CO2 gas emissions. Secondly, information technology has a significant impact on the increase of CO2 gas emissions. Thirdly, Indonesia’s urbanization has reduced CO2 gas emissions.
Bahasa Abstract
Penelitian ini menjelaskan pengaruh perkembangan teknologi informasi, total faktor produktivitas (TFP), dan urbanisasi terhadap emisi gas CO2 di Indonesia dari tahun 1975–2014. Untuk menguji secara empiris, penelitian ini menggunakan model Autoregressive Distributed Lag (ARDL). Ada beberapa hasil dalam penelitian ini. Pertama, koefisien nilai TFP pada jangka pendek lebih rendah daripada nilai koefisiennya pada jangka panjang sehingga penelitian ini menunjukkan bahwa hipotesis Enviromental Kuznets Curve (EKC) tidak terbukti. Hal ini menjadi salah satu penyebab naiknya emisi gas CO2. Kedua, teknologi informasi memiliki dampak yang signifikan terhadap naiknya emisi gas CO2. Ketiga, urbanisasi di Indonesia mengurangi emisi gas CO2.
References
[1] Amri, F., Zaied, Y. B., & Lahouel, B. B. (2019). ICT, total factor productivity, and carbon dioxide emissions in Tunisia. Technological Forecasting and Social Change, 146, 212-217. doi: https://doi.org/10.1016/j.techfore.2019.05.028.
[2] Asongu, S., El Montasser, G.,&Toumi, H. (2016). Testing the relationships between energy consumption, CO2 emissions, and economic growth in 24 African countries: a panel ARDL approach. Environmental Science and Pollution Research, 23(7), 6563-6573. doi: 10.1007/s11356-015-5883-7.
[3] Bai, X., & Imura, H. (2000). A comparative study of urban environment in East Asia: stage model of urban environmental evolution. International Review for Environmental Strategies, 1(1), 135-158.
[4] Capello, R., & Camagni, R. (2000). Beyond optimal city size: an evaluation of alternative urban growth patterns. Urban Studies, 37(9), 1479-1496. doi: https: //doi.org/10.1080/00420980020080221.
[5] Economic Research Federal Reserve Bank of St. Louis. (2019).Total factor productivity at constant national prices for Indonesia. Diakses 22 Januari 2019 dari https://fred. stlouisfed.org/series/RTFPNAIDA632NRUG.
[6] European Commission. (2010). ICT and e-Business for an innovative and sustainable economy: 7th Synthesis Report of the Sectoral e-Business Watch (2010). Diakses 22 Januari 2019 dari https://www.empirica.com/themen/ebusiness/ documents/EBR09-10.pdf.
[7] Higon, D. A., Gholami, R., & Shirazi, F. (2017). ICT and environmental sustainability: A global perspective. Telematics and Informatics, 34(4), 85-95. doi: https://doi.org/10.1016/j.tele.2017.01.001.
[8] Ladu, M. G., & Meleddu, M. (2014). Is there any relationship between energy and TFP (total factor productivity)? Apanel cointegration approach for Italian regions. Energy, 75, 560- 567. doi: https://doi.org/10.1016/j.energy.2014.08.018.
[9] Lee, J. W., & Brahmasrene, T. (2014). ICT, CO2 emissions and economic growth: evidence from a panel of ASEAN. Global Economic Review, 43(2), 93-109. doi: https: //doi.org/10.1080/1226508X.2014.917803.
[10] Melville, N. P. (2010). Information systems innovation for environmental sustainability. MIS Quarterly, 34(1), 1-21.
[11] Mol, A. P. J., & Spaargaren, G. (2000). Ecological modernisation theory in debate: A review. Environmental Politics, 9(1), 17-49. doi: https://doi.org/10.1080/09644010008414511.
[12] Pamlin, D. (Ed.) (2002). Sustainability at the speed of light: Opportunities and challenges for tomorrow’s society. WWF Sweden. Diakses 22 Januari 2019 dari https://wwfeu. awsassets.panda.org/downloads/wwf ic 1.pdf.
[13] Pamlin, D., & Pahlman, S. (2008). Outline for the first global IT strategy for CO2 reductions: A billion tonnes of CO2 reductions and beyond through transformative change. WWF Sweden. Diakses 22 Januari 2019 dari https://wwfeu. awsassets.panda.org/downloads/global strategy for the 1st billion tonnes with ict by wwf.pdf.
[14] Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289-326. doi: https: //doi.org/10.1002/jae.616.
[15] Plepys, A. (2002). The grey side of ICT. Environmental Impact Assessment Review, 22(5), 509-523. doi: https: //doi.org/10.1016/S0195-9255(02)00025-2.
[16] Wang, Y., Li, L., Kubota, J., Han, R., Zhu, X., & Lu, G. (2016). Does urbanization lead to more carbon emission? Evidence from a panel of BRICS countries. Applied Energy, 168, 375- 380. doi: https://doi.org/10.1016/j.apenergy.2016.01.105.
[17] Watson, R. T., Corbett, J., Boudreau, M. C., & Webster, J. (2012). An information strategy for environmental sustainability. Communications of the ACM, 55(7), 28-30. doi: https://doi.org/10.1145/2209249.2209261.
[18] World Bank Indicator. (2019a). CO2 emissions (kt) – Indonesia. Diakses 22 Januari 2019 dari https://data.worldbank.org/ indicator/EN.ATM.CO2E.KT?locations=ID
[19] World Bank Indicator. (2019b). Mobile cellular subscriptions (per 100 people) – Indonesia. Diakses 22 Januari 2019 dari https://data.worldbank.org/indicator/IT.CEL.SETS.P2? locations=ID.
[20] World Bank Indicator. (2019c). Mobile cellular subscriptions (per 100 people) – Indonesia, Malaysia, Singapore, Brunei Darussalam. Diakses 22 Januari 2019 dari https://data. worldbank.org/indicator/IT.CEL.SETS.P2?locations=ID.
[21] World Bank Indicator. (2019d). Research and development expenditure (% of GDP) – Indonesia. Diakses 22 Januari 2019 dari https://data.worldbank.org/indicator/GB.XPD.RSDV. GD.ZS?locations=ID.
[22] World Bank Indicator. (2019e). Urban population growth (annual %) – Indonesia. Diakses 22 Januari 2019 dari https://data. worldbank.org/indicator/SP.URB.GROW?locations=ID.
[23] Zhang, C., & Liu, C. (2015). The impact of ICT industry on CO2 emissions: a regional analysis in China. Renewable and Sustainable Energy Reviews, 44, 12-19. doi: https: //doi.org/10.1016/j.rser.2014.12.011.
Recommended Citation
Moddilani, Ganiko and Irwandi, Irwandi
(2021)
"Perkembangan Teknologi Informasi, TFP, dan Emisi Gas CO2 di Indonesia,"
Jurnal Ekonomi dan Pembangunan Indonesia: Vol. 21:
No.
1, Article 4.
DOI: 10.21002/jepi.2021.03
Available at:
https://scholarhub.ui.ac.id/jepi/vol21/iss1/4