•  
  •  
 

Abstract

Volatility is one of the interesting phenomenon in financial market; the reason is because of its effect to the existence of global financial market. The existence of volatility closely related to the risk in stock model. This research aims to determine the right model in modeling stock return volatility taken from four Asian countries with symmetric and various asymmetric model of GARCH. The result from fitting the right model for all of four stock markets showed that asymmetric model of GARCH showing a better estimation in portraying stock return volatility. Moreover, the model can reveal the existence of asymmetric effects on those four stock markets.

Bahasa Abstract

Volatilitas pada pasar keuangan merupakan salah satu fenomena yang sangat menarik karena dampaknya terhadap eksistensi pasar finansial global. Keberadaan volatilitas berhubungan dengan risiko sebuah. Tulisan ini bertujuan menentukan model terbaik dalam memodelkan volatilitas return saham pada empat negara di Asia dengan menggunakan model simetris GARCH dan berbagai macam model asimetris GARCH. Hasil dari fitting model terbaik untuk keempat pasar saham menunjukkan bahwa model asimetris GARCH menunjukkan estimasi yang lebih baik dalam menggambarkan volatilitas return saham. Lebih jauh lagi, model tersebut mengungkapkan keberadaan efek asimetris pada keempat pasar saham.

References

[1] Abdalla, S. Z. S. (2012). Modelling stock returns volatility: Empirical evidence from Saudi Stock Exchange. International Research Journal of Finance and Economics, 85, 166–179.

[2] Ajireswara, A. (2014). Transmisi volatilitas saham utama dunia terhadap IHSG dan Indeks Sektoral Indonesia. Tesis. Bogor: Institut Pertanian Bogor.

[3] Al Freedi, A., Shamiri, A., & Isa, Z. (2011). A study on the behavior of volatility in Saudi Arabia stock market using symmetric and asymmetric GARCH models. Journal of Mathematics and Statistics, 8(1), 98–106. DOI: 10.3844/jmssp.2012.98.108.

[4] Alberg, D., Shalit, H., & Yosef, R. (2008). Estimating stock market volatility using asymmetric GARCH models. Applied Financial Economics, 18(15), 1201–1208. DOI: https://doi.org/10.1080/09603100701604225.

[5] Awartani, B. M., & Corradi, V. (2005). Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries. International Journal of Forecasting, 21(1), 167– 183. DOI: https://doi.org/10.1016/j.ijforecast.2004.08.003.

[6] Badshah, I. U. (2013). Quantile regression analysis of the asymmetric returnvolatility relation. The Journal of Futures Markets, 33(3), 235–265. DOI: https: //doi.org/10.1002/fut.21551.

[7] Black, F. (1976). Stuedies of stock price volatility changes. Proceedings of the 1976 Meetings of the American Statistical Association, Business and Economics Section, 177–181.

[8] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. DOI: https://doi.org/10.1016/0304-4076(86)90063-1.

[9] Chuang, I. Y., Lu, J. R., & Tswei, K. (2007). Interdependence of international equity variances: evidence from East Asian markets. Emerging Markets Review, 8(4), 311–327. DOI: https://doi.org/10.1016/j.ememar.2007.08.001.

[10] Ding, Z., Granger, C. W., & Engle, R. F. (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance, 1(1), 83–106. DOI: https://doi.org/10.1016/0927-5398(93)90006-D.

[11] Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987–1007. DOI: 10.2307/1912773.

[12] Engle, R. F., & Bollerslev, T. (1986). Modelling the persistence of conditional variances. Econometric Reviews, 5(1), 1–50. DOI: https://doi.org/10.1080/07474938608800095.

[13] Engle, R. F., & Lee, G. J. (1993). A Permanent and transitory component model of stock return volatility. Discussion Paper 92-44R. San Diego: University of California.

[14] Engle, R. F., & Ng, V. K. (1993). Measuring and testing the impact of news on volatility. The Journal of Finance, 48(5), 1749–1778. DOI: https://doi.org/10.1111/j.1540- 6261.1993.tb05127.x.

[15] Frijns, B., Tallau, C., & TouraniRad, A. (2010). The information content of implied volatility: evidence from Australia. The Journal of Futures Markets, 30(2), 134–155. DOI: https://doi.org/10.1002/fut.20405.

[16] Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48(5), 1779–1801. DOI: https://doi.org/10.1111/j.1540- 6261.1993.tb05128.x.

[17] Gokbulut, R. I., & Pekkaya, M. (2014). Estimating and forecasting volatility of financial markets using asymmetric GARCH models: An application on Turkish financial markets. International Journal of Economics and Finance, 6(4), 23–35. DOI: http://dx.doi.org/10.5539/ijef.v6n4p23.

[18] Hibbert, A. M., Daigler, R. T., & Dupoyet, B. (2008). A behavioral explanation for the negative asymmetric return– volatility relation. Journal of Banking & Finance, 32(10), 2254– 2266. DOI: https://doi.org/10.1016/j.jbankfin.2007.12.046.

[19] In, F., Kim, S., Yoon, J. H., & Viney, C. (2001). Dynamic interdependence and volatility transmission of Asian stock markets: Evidence from the Asian crisis. International Review of Financial Analysis, 10(1), 87–96. DOI: https://doi.org/10.1016/S1057-5219(00)00045-4.

[20] Kartika, A. (2010). Volatilitas harga saham di Indonesia dan Malaysia. Jurnal Ilmu Ekonomi ASET, 12(1), 17–26.

[21] Kovacic, Z. J. (2008). Forecasting volatility: Evidence from the Macedonian Stock Exchange. International Research Journal of Finance and Economics, 18, 182–212.

[22] Lestano, L., & Sucito, J. (2010). Spillover volatilitas pasar saham Indonesia dan Singapura periode 2001- 2005. Jurnal Akuntansi dan Keuangan, 12(1), 17–25. DOI: https://doi.org/10.9744/jak.12.1.pp.%2017-25.

[23] Lim, C. M., & Sek, S. K. (2013). Comparing the performances of GARCH-type models in capturing the stock market volatility in Malaysia. Procedia Economics and Finance, 5, 478– 487. DOI: https://doi.org/10.1016/S2212-5671(13)00056-7.

[24] Liu, H. C., & Hung, J. C. (2010). Forecasting S&P-100 stock index volatility: The role of volatility asymmetry and distributional assumption in GARCH models. Expert Systems with Applications, 37(7), 4928–4934. DOI: https://doi.org/10.1016/j.eswa.2009.12.022.

[25] Maqsood, A., Safdar, S., Shafi, R., & Lelit, N. J. (2017). Modeling stock market volatility using GARCH models: A case study of Nairobi Securities Exchange (NSE). Open Journal of Statistics, 7, 369–381. DOI: 10.4236/ojs.2017.72026.

[26] Maskur, A. (2009). Volatilitas harga saham antara saham konvensional dan syariah. Dinamika Keuangan dan Perbankan, 1(2), 82–94.

[27] Miron, D., & Tudor, C. (2010). Asymmetric conditional volatility models: Empirical estimation and comparison of forecasting accuracy. Romanian Journal of Economic Forecasting, 13(3), 74–92.

[28] Mishra, A. K., Swain, N., & Malhotra, D. K. (2007). Volatility spillover between stock and foreign exchange markets: Indian evidence. International Journal of Business, 12(3), 343– 359.

[29] Miyakoshi, T. (2003). Spillovers of stock return volatility to Asian equity markets from Japan and the US. Journal of International Financial Markets, Institutions and Money, 13(4), 383–399. DOI: https://doi.org/10.1016/S1042-4431(03)00015- 5.

[30] Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2008). Introduction to time series analysis and forecasting. United States: Wiley.

[31] Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347–370. DOI: 10.2307/2938260.

[32] Padungsaksawasdi, C., & Daigler, R. (2014). Testing the behavioural approach of the return-implied volatility relation: The 2008 financial crisis vs. normal markets. Review of Futures Markets, 21, 479–509.

[33] Qamruzzaman A. C. M. A, M. (2015). Estimating and forecasting volatility of stock indices using asymmetric GARCH models and Student-t densities: Evidence from Chittagong Stock Exchange. International Journal of Business and Finance Management Research, 3, 19–34.

[34] Wu, G. (2001). The determinants of asymmetric volatility. The Review of Financial Studies, 14(3), 837–859. DOI: https://doi.org/10.1093/rfs/14.3.837.

[35] Yalama, A., & Sevil, G. (2008). Forecasting world stock markets volatility. International Research Journal of Finance and Economics, 15, 159–174.

[36] Zakoian, J. M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and Control, 18(5), 931–955. DOI: https://doi.org/10.1016/0165-1889(94)90039-6.

Included in

Economics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.