•  
  •  
 

Abstract

Most drugs, including antiviral drugs, show low solubility in water, which affects dissolution, bioavailability, and therapeutic effectiveness. Therefore, many antiviral drugs are given in very large doses. One of the efforts to overcome these problems is the application of solid dispersions in which polymers and surfactants can trap drug molecules that are in the amorphous phase. Drugs in a hydrophilic carrier will increase wettability, water absorption capacity, and porosity of particles, so that the drug is released better. This review article will discuss the development of technology in solid-state, how solid dispersion overcomes the lack of solubility and the rate of dissolution of antiviral drugs, and solid dispersion preparation techniques. We also discuss some examples of successful applications of solid dispersion methods to antiviral drugs that have been circulating on the market. Overall, this review article offers information of innovation in the development of antiviral drugs to provide more solid dispersion antiviral drug products.

References

Abbott, A. P., Ahmed, E. I., Prasad, K., Qader, I. B., & Ryder, K. S. (2017). Liquid pharmaceuticals formulation by eutectic formation. Fluid Phase Equilibria, 448, 2–8. https://doi.org/10.1016/j.fluid.2017.05.009

Akbari, J., Saeedi, M., Morteza-Semnani, K., Kelidari, H. R., Moghanlou, F. S., Zareh, G., & Rostamkalaei, S. (2015). The effect of tween 20, 60, and 80 on dissolution behavior of sprionolactone in solid dispersions prepared by PEG 6000. Advanced Pharmaceutical Bulletin, 5(3), 435–441. https://doi.org/10.15171/apb.2015.059

Akterian, S. (2018). Evaluating the vapour evaporation from the surface of pure organic solvents and their mixtures Presented at the 65th Anniversary Scientific Conference with International Participation “Food Science , Engineering and Technology – 2018 .” (November).

Al-Obaidi, H., Lawrence, M. J., Shah, S., Moghul, H., Al-Saden, N., & Bari, F. (2013). Effect of drug-polymer interactions on the aqueous solubility of milled solid dispersions. International Journal of Pharmaceutics, 446(1–2), 100–105. https://doi.org/10.1016/j.ijpharm.2013.02.009

Alves, L. D. S., De La Roca Soares, M. F., De Albuquerque, C. T., Da Silva, É. R., Vieira, A. C. C., Fontes, D. A. F., Rolim Neto, P. J. (2014). Solid dispersion of efavirenz in PVP K-30 by conventional solvent and kneading methods. Carbohydrate Polymers, 104(1), 166–174. https://doi.org/10.1016/j.carbpol.2014.01.027

Amidon, G. L., Lennernäs, H., Shah, V. P., & Crison, J. R. (1995). A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability. Pharmaceutical Research: An Official Journal of the American Association of Pharmaceutical Scientists, Vol. 12, pp. 413–420. https://doi.org/10.1023/A:1016212804288

Arora, S., Chawla, A., Pawar, P., & Sharma, P. (2012). Novel drug delivery approaches on antiviral and antiretroviral agents. Journal of Advanced Pharmaceutical Technology and Research, 3(3), 147–159. https://doi.org/10.4103/2231-4040.101007

Ates, M., Kaynak, M. S., & Sahin, S. (2016). Effect of permeability enhancers on paracellular permeability of acyclovir. Journal of Pharmacy and Pharmacology, 68(6), 781–790. https://doi.org/10.1111/jphp.12551

Attia, I. A., El-Gizawy, S. A., Fouda, M. A., & Donia, A. M. (2007). Influence of a niosomal formulation on the oral bioavailability of acyclovir in rabbits. AAPS PharmSciTech, 8(4), 1–7. https://doi.org/10.1208/pt0804106

Awasthi, R., Madan, J., Kamate, V., & Dua, K. (2017). Improving the solubility of nevirapine using a hydrotropyand mixed hydrotropy based solid dispersion approach. Polymers in Medicine, (2), 83–90. https://doi.org/10.17219/pim/77093

Badens, E., Majerik, V., Horváth, G., Szokonya, L., Bosc, N., Teillaud, E., & Charbit, G. (2009). Comparison of solid dispersions produced by supercritical antisolvent and spray-freezing technologies. International Journal of Pharmaceutics, 377(1–2), 25–34. https://doi.org/10.1016/j.ijpharm.2009.04.047

Chaudhuri, S., Symons, J. A., & Deval, J. (2018). Innovation and trends in the development and approval of antiviral medicines: 1987–2017 and beyond. Antiviral Research, 155(May), 76–88. https://doi.org/10.1016/j.antiviral.2018.05.005

Cid, A. G., Simonazzi, A., Palma, S. D., & Bermúdez, J. M. (2019). Solid dispersion technology as a strategy to improve the bioavailability of poorly soluble drugs. Therapeutic Delivery, 10(6), 363–382. https://doi.org/10.4155/tde-2019-0007

Craig, D. Q. M. (2002). The mechanisms of drug release from solid dispersions in water-soluble polymers. International Journal of Pharmaceutics, 231(2), 131–144. https://doi.org/10.1016/S0378-5173(01)00891-2

Crowley, M. M., Zhang, F., Repka, M. A., Thumma, S., Upadhye, S. B., Battu, S. K., … Martin, C. (2007). Pharmaceutical applications of hot-melt extrusion: Part I. Drug Development and Industrial Pharmacy, 33(9), 909–926. https://doi.org/10.1080/03639040701498759

Damian, F., Blaton, N., Kinget, R., & Van Den Mooter, G. (2002). Physical stability of solid dispersions of the antiviral agent UC-781 with PEG 6000, Gelucire® 44/14 and PVP K30. International Journal of Pharmaceutics, 244(1–2), 87–98. https://doi.org/10.1016/S0378-5173(02)00316-2

Damian, Festo, Blaton, N., Naesens, L., Balzarini, J., Kinget, R., Augustijns, P., & Van Den Mooter, G. (2000). Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and Gelucire 44/14. European Journal of Pharmaceutical Sciences, 10(4), 311–322. https://doi.org/10.1016/S0928-0987(00)00084-1

Dengale, S. J., Hussen, S. S., Krishna, B. S. M., Musmade, P. B., Gautham Shenoy, G., & Bhat, K. (2015). Fabrication, solid state characterization and bioavailability assessment of stable binary amorphous phases of Ritonavir with Quercetin. European Journal of Pharmaceutics and Biopharmaceutics, 89(December), 329–338. https://doi.org/10.1016/j.ejpb.2014.12.025

Dhore, P. W., Dave, V. S., Saoji, S. D., Bobde, Y. S., Mack, C., & Raut, N. A. (2017). Enhancement of the aqueous solubility and permeability of a poorly water soluble drug ritonavir via lyophilized milk-based solid dispersions. Pharmaceutical Development and Technology, 22(1), 90–102. https://doi.org/10.1080/10837450.2016.1193193

DiNunzio, J. C., Brough, C., Miller, D. A., Williams, R. O., & McGinity, J. W. (2010). Applications of KinetiSol® Dispersing for the production of plasticizer free amorphous solid dispersions. European Journal of Pharmaceutical Sciences, 40(3), 179–187. https://doi.org/10.1016/j.ejps.2010.03.002

Edueng, K., Mahlin, D., Larsson, P., & Bergström, C. A. S. (2017). Mechanism-based selection of stabilization strategy for amorphous formulations: Insights into crystallization pathways. Journal of Controlled Release, 256(January), 193–202. https://doi.org/10.1016/j.jconrel.2017.04.015

Eloy, J. O., Saraiva, J., De Albuquerque, S., & Marchetti, J. M. (2015). Preparation, characterization and evaluation of the in vivo trypanocidal activity of ursolic acid-loaded solid dispersion with poloxamer 407 and sodium caprate. Brazilian Journal of Pharmaceutical Sciences, 51(1), 101–109. https://doi.org/10.1590/S1984-82502015000100011

Esfandiari, N. (2015). Production of micro and nano particles of pharmaceutical by supercritical carbon dioxide. Journal of Supercritical Fluids, 100, 129–141. https://doi.org/10.1016/j.supflu.2014.12.028

Feng, D., Peng, T., Huang, Z., Singh, V., Shi, Y., Wen, T., Wu, C. (2018). Polymer–surfactant system based amorphous solid dispersion: Precipitation inhibition and bioavailability enhancement of itraconazole. Pharmaceutics, 10(2), 1–15. https://doi.org/10.3390/pharmaceutics10020053

Fitriani, L., Haqi, A., & Zaini, E. (2016). Preparation and characterization of solid dispersion freeze-dried efavirenz - Polyvinylpyrrolidone K-30. Journal of Advanced Pharmaceutical Technology and Research, 7(3), 105–109. https://doi.org/10.4103/2231-4040.184592

Fukushima, K., Terasaka, S., Haraya, K., Kodera, S., Seki, Y., Wada, A., Takada, K. (2007). Pharmaceutical approach to HIV protease inhibitor atazanavir for bioavailability enhancement based on solid dispersion system. Biological and Pharmaceutical Bulletin, 30(4), 733–738. https://doi.org/10.1248/bpb.30.733

Fule, R., Dhamecha, D., Maniruzzaman, M., Khale, A., & Amin, P. (2015). Development of hot melt co-formulated antimalarial solid dispersion system in fixed dose form (ARLUMELT): Evaluating amorphous state and in vivo performance. International Journal of Pharmaceutics, 496(1), 137–156. https://doi.org/10.1016/j.ijpharm.2015.09.069

Gadade, D., Arsul, V. A., & Rathi, P. B. (2015). Solubility Enhancement Of Antiviral Drugacyclovir By Solid. (October 2016).

Genina, N., Hadi, B., & Löbmann, K. (2018). Hot Melt Extrusion as Solvent-Free Technique for a Continuous Manufacturing of Drug-Loaded Mesoporous Silica. Journal of Pharmaceutical Sciences, 107(1), 149–155. https://doi.org/10.1016/j.xphs.2017.05.039

Goddeeris, C., Willems, T., Houthoofd, K., Martens, J. A., & Van den Mooter, G. (2008). Dissolution enhancement of the anti-HIV drug UC 781 by formulation in a ternary solid dispersion with TPGS 1000 and Eudragit E100. European Journal of Pharmaceutics and Biopharmaceutics, 70(3), 861–868. https://doi.org/10.1016/j.ejpb.2008.07.006

Göke, K., Lorenz, T., Repanas, A., Schneider, F., Steiner, D., Baumann, K., Kwade, A. (2018). Novel strategies for the formulation and processing of poorly water-soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 126, 40–56. https://doi.org/10.1016/j.ejpb.2017.05.008

Gould, S., & Scott, R. C. (2005). 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): A toxicology review. Food and Chemical Toxicology, 43(10), 1451–1459. https://doi.org/10.1016/j.fct.2005.03.007

Grande, F., Ioele, G., Occhiuzzi, M. A., De Luca, M., Mazzotta, E., Ragno, G., Muzzalupo, R. (2019). Reverse transcriptase inhibitors nanosystems designed for drug stability and controlled delivery. Pharmaceutics, 11(5), 1–26. https://doi.org/10.3390/pharmaceutics11050197

Guedes, F. L., De Oliveira, B. G., Hernandes, M. Z., De Simone, C. A., Veiga, F. J. B., De Lima, M. D. C. A., Neto, P. J. R. (2011). Solid dispersions of imidazolidinedione by PEG and PVP polymers with potential antischistosomal activities. AAPS PharmSciTech, 12(1), 401–410. https://doi.org/10.1208/s12249-010-9556-z

Gurunath, S., Pradeep Kumar, S., Basavaraj, N. K., & Patil, P. A. (2013). Amorphous solid dispersion method for improving oral bioavailability of poorly water-soluble drugs. Journal of Pharmacy Research, 6(4), 476–480. https://doi.org/10.1016/j.jopr.2013.04.008

Ha, E. S., Kim, J. S., Baek, I. H., Hwang, S. J., & Kim, M. S. (2015). Enhancement of dissolution and bioavailability of ezetimibe by amorphous solid dispersion nanoparticles fabricated using supercritical antisolvent process. Journal of Pharmaceutical Investigation, 45(7), 641–649. https://doi.org/10.1007/s40005-015-0218-8

Hancock, B. C., & Zografi, G. (1997). Characteristics and significance of the amorphous state in pharmaceutical systems. Journal of Pharmaceutical Sciences, 86(1), 1. https://doi.org/10.1021/js9601896

Hayata, Y. (2002). NII-Electronic Library Service. Chemical Pharmaceutical Bulletin, (43), 2091. Retrieved from http://www.mendeley.com/research/geology-volcanic-history-eruptive-style-yakedake-volcano-group-central-japan/

Hoang Pham, U. G. (2013). Pharmaceutical Applications of Eutectic Mixtures. Journal of Developing Drugs, 02(03), 3–4. https://doi.org/10.4172/2329-6631.1000e130

Hodgdon, T. K., & Kaler, E. W. (2007). Hydrotropic solutions. Current Opinion in Colloid and Interface Science, 12(3), 121–128. https://doi.org/10.1016/j.cocis.2007.06.004

Huang, Y., & Dai, W.-G. (2014). Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharmaceutica Sinica B, 4(1), 18–25. https://doi.org/10.1016/j.apsb.2013.11.001

Hughey, J. R., Keen, J. M., Miller, D. A., Brough, C., & McGinity, J. W. (2012). Preparation and characterization of fusion processed solid dispersions containing a viscous thermally labile polymeric carrier. International Journal of Pharmaceutics, 438(1–2), 11–19. https://doi.org/10.1016/j.ijpharm.2012.08.032

Hyman, P., & Abedon, S. T. (2012). Smaller fleas: Viruses of microorganisms. Scientifica, 2012, 1–23. https://doi.org/10.6064/2012/734023

Ilevbare, G. A., Liu, H., Edgar, K. J., & Taylor, L. S. (2013). Impact of polymers on crystal growth rate of structurally diverse compounds from aqueous solution. Molecular Pharmaceutics, 10(6), 2381–2393. https://doi.org/10.1021/mp400029v

Indulkar, A. S., Lou, X., Zhang, G. G. Z., & Taylor, L. S. (2019). Insights into the dissolution mechanism of ritonavir-copovidone amorphous solid dispersions: Importance of congruent release for enhanced performance. In Molecular Pharmaceutics (Vol. 16). https://doi.org/10.1021/acs.molpharmaceut.8b01261

Jackson, M. J., Kestur, U. S., Hussain, M. A., & Taylor, L. S. (2016). Characterization of Supersaturated Danazol Solutions - Impact of Polymers on Solution Properties and Phase Transitions. Pharmaceutical Research, 33(5), 1276–1288. https://doi.org/10.1007/s11095-016-1871-y

Jafari, E. (2013). Preparation, characterization and dissolution of solid dispersion of diclofenac sodium using eudragit E-100. Journal of Applied Pharmaceutical Science, 3(8), 167–170. https://doi.org/10.7324/JAPS.2013.3829

Javeer, S. D., & Amin, P. D. (2014). Solubility and dissolution enhancement of HPMC - based solid dispersions of carbamazepine by hot-melt extrusion technique. Asian Journal of Pharmaceutics, 8(2), 119–124. https://doi.org/10.4103/0973-8398.134950

Kanzer, J., Tho, I., Flaten, G. E., Hölig, P., Fricker, G., & Brandl, M. (2010). In-vitro permeability screening of melt extrudate formulations containing poorly water-soluble drug compounds using the phospholipid vesicle-based barrier. Journal of Pharmacy and Pharmacology, 62(11), 1591–1598. https://doi.org/10.1111/j.2042-7158.2010.01172.x

Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., & Onoue, S. (2011). Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. International Journal of Pharmaceutics, 420(1), 1–10. https://doi.org/10.1016/j.ijpharm.2011.08.032

Kim, S. A., Kim, S. W., Choi, H. K., & Han, H. K. (2013). Enhanced systemic exposure of saquinavir via the concomitant use of curcumin-loaded solid dispersion in rats. European Journal of Pharmaceutical Sciences, 49(5), 800–804. https://doi.org/10.1016/j.ejps.2013.05.029

Knopp, M. M., Olesen, N. E., Holm, P., Langguth, P., Holm, R., & Rades, T. (2015). Influence of Polymer Molecular Weight on Drug-Polymer Solubility: A Comparison between Experimentally Determined Solubility in PVP and Prediction Derived from Solubility in Monomer. Journal of Pharmaceutical Sciences, 104(9), 2905–2912. https://doi.org/10.1002/jps.24410

Kuo, Y. C., & Kuo, C. Y. (2008). Electromagnetic interference in the permeability of saquinavir across the blood-brain barrier using nanoparticulate carriers. International Journal of Pharmaceutics, 351(1–2), 271–281. https://doi.org/10.1016/j.ijpharm.2007.09.020

LaFountaine, J. S., Jermain, S. V., Prasad, L. K., Brough, C., Miller, D. A., Lubda, D., Williams, R. O. (2016). Enabling thermal processing of ritonavir-polyvinyl alcohol amorphous solid dispersions by KinetiSol® Dispersing. European Journal of Pharmaceutics and Biopharmaceutics, 101(February), 72–81. https://doi.org/10.1016/j.ejpb.2016.01.018

LaFountaine, J. S., Prasad, L. K., Brough, C., Miller, D. A., McGinity, J. W., & Williams, R. O. (2016). Thermal Processing of PVP- and HPMC-Based Amorphous Solid Dispersions. AAPS PharmSciTech, 17(1), 120–132.

Lavra, Z. M. M., Pereira de Santana, D., & Ré, M. I. (2017). Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus. Drug Development and Industrial Pharmacy, 43(1), 42–54. https://doi.org/10.1080/03639045.2016.1205598

Law, D., Krill, S. L., Schmitt, E. A., Fort, J. J., Qiu, Y., Wang, W., & Porter, W. R. (2001). Physicochemical considerations in the preparation of amorphous ritonavir-poly(ethylene glycol) 8000 solid dispersions. Journal of Pharmaceutical Sciences, 90(8), 1015–1025. https://doi.org/10.1002/jps.1054

Law, D., Schmitt, E. A., Marsh, K. C., Everitt, E. A., Wang, W., Fort, J. J., … Qiu, Y. (2004). Ritonavir Solid Dispersion Qc. Journal of Pharmaceutical Sciences, 93(3), 563–570.

Lembo, D., & Cavalli, R. (2010). Nanoparticulate delivery systems for antiviral drugs. Antiviral Chemistry and Chemotherapy, 21(2), 53–70. https://doi.org/10.3851/IMP1684

Lembo, D., Trotta, F., & Cavalli, R. (2018). Cyclodextrin-based nanosponges as vehicles for antiviral drugs: Challenges and perspectives. Nanomedicine, 13(5), 477–480. https://doi.org/10.2217/nnm-2017-0383

Loh, Z. H., Samanta, A. K., & Sia Heng, P. W. (2014). Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian Journal of Pharmaceutical Sciences, 10(4), 255–274. https://doi.org/10.1016/j.ajps.2014.12.006

Łyszczarz, E., Hofmanová, J., Szafraniec-Szczęsny, J., & Jachowicz, R. (2020). Orodispersible films containing ball milled aripiprazole-poloxamer®407 solid dispersions. International Journal of Pharmaceutics, 575(December 2019). https://doi.org/10.1016/j.ijpharm.2019.118955

Mah, P. T., Peltonen, L., Novakovic, D., Rades, T., Strachan, C. J., & Laaksonen, T. (2016). The effect of surfactants on the dissolution behavior of amorphous formulations. European Journal of Pharmaceutics and Biopharmaceutics, 103, 13–22. https://doi.org/10.1016/j.ejpb.2016.03.007

Mallick, S., Pattnaik, S., Swain, K., De, P. K., Saha, A., Ghoshal, G., & Mondal, A. (2008). Formation of physically stable amorphous phase of ibuprofen by solid state milling with kaolin. European Journal of Pharmaceutics and Biopharmaceutics, 68(2), 346–351. https://doi.org/10.1016/j.ejpb.2007.06.003

Marsac, P. J., Rumondor, A. C. F., Nivens, D. E., Kestur, U. S., Lia, S., & Taylor, L. S. (2010). Effect of temperature and moisture on the miscibility of amorphous dispersions of felodipine and poly(vinyl pyrrolidone). Journal of Pharmaceutical Sciences. https://doi.org/10.1002/jps.21809

Mazumder, S., Dewangan, A. K., & Pavurala, N. (2017). Enhanced dissolution of poorly soluble antiviral drugs from nanoparticles of cellulose acetate based solid dispersion matrices. Asian Journal of Pharmaceutical Sciences, 12(6), 532–541. https://doi.org/10.1016/j.ajps.2017.07.002

Meng, F., Gala, U., & Chauhan, H. (2015). Classification of solid dispersions: Correlation to (i) stability and solubility (II) preparation and characterization techniques. Drug Development and Industrial Pharmacy, 41(9), 1401–1415. https://doi.org/10.3109/03639045.2015.1018274

Miller, D. A. (2018). Editorial for Theme Issue: Applications of KinetiSol Dispersing for Advanced Amorphous Solid Dispersions. AAPS PharmSciTech, 19(5), 1931–1932. https://doi.org/10.1208/s12249-018-1016-1

Nair, A. B., Attimarad, M., Al-Dhubiab, B. E., Wadhwa, J., Harsha, S., & Ahmed, M. (2014). Enhanced oral bioavailability of acyclovir by inclusion complex using hydroxypropyl-β-cyclodextrin. Drug Delivery, 21(7), 540–547. https://doi.org/10.3109/10717544.2013.853213

Nart, V., França, M. T., Anzilaggo, D., Riekes, M. K., Kratz, J. M., De Campos, C. E. M., Stulzer, H. K. (2015). Ball-milled solid dispersions of BCS Class IV drugs: Impact on the dissolution rate and intestinal permeability of acyclovir. Materials Science and Engineering C, 53, 229–238. https://doi.org/10.1016/j.msec.2015.04.028

Newman, A. (2016). Rational design for amorphous solid dispersions. In Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice: Second Edition. https://doi.org/10.1016/B978-0-12-802447-8.00018-2

Nikghalb, L. A., Singh, G., Singh, G., & Kahkeshan, K. F. (2012). Solid Dispersion: Methods and Polymers to increase the solubility of poorly soluble drugs. Journal of Applied Pharmaceutical Science, 2(10), 170–175. https://doi.org/10.7324/JAPS.2012.21031

Ohara, T., Kitamura, S., Kitagawa, T., & Terada, K. (2005). Dissolution mechanism of poorly water-soluble drug from extended release solid dispersion system with ethylcellulose and hydroxypropylmethylcellulose. International Journal of Pharmaceutics, 302(1–2), 95–102. https://doi.org/10.1016/j.ijpharm.2005.06.019

Palmberger, T. F., Hombach, J., & Bernkop-Schnürch, A. (2008). Thiolated chitosan: Development and in vitro evaluation of an oral delivery system for acyclovir. International Journal of Pharmaceutics, 348(1–2), 54–60. https://doi.org/10.1016/j.ijpharm.2007.07.004

Patel, G. M., Shelat, P. K., & Lalwani, A. N. (2017). QbD based development of proliposome of lopinavir for improved oral bioavailability. European Journal of Pharmaceutical Sciences, 108, 50–61. https://doi.org/10.1016/j.ejps.2016.08.057

Pawar, J., Tayade, A., Gangurde, A., Moravkar, K., & Amin, P. (2016). Solubility and dissolution enhancement of efavirenz hot melt extruded amorphous solid dispersions using combination of polymeric blends: A QbD approach. European Journal of Pharmaceutical Sciences, 88, 37–49. https://doi.org/10.1016/j.ejps.2016.04.001

Pouton, C. W. (2006). Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. European Journal of Pharmaceutical Sciences, 29(3-4 SPEC. ISS.), 278–287. https://doi.org/10.1016/j.ejps.2006.04.016

Pradhan, R., Kim, S. Y., Yong, C. S., & Kim, J. O. (2016). Preparation and characterization of spray-dried valsartan-loaded Eudragit® E PO solid dispersion microparticles. Asian Journal of Pharmaceutical Sciences, 11(6), 744–750. https://doi.org/10.1016/j.ajps.2016.05.002

Quevedo, M. A., & Briñón, M. C. (2009). In vitro and in vivo pharmacokinetic characterization of two novel prodrugs of zidovudine. Antiviral Research, 83(2), 103–111. https://doi.org/10.1016/j.antiviral.2009.03.010

Ramesh, K., Shekar, B. C., & Khadgapathi, P. (2015). Formulation and evaluation of poorly soluble Etravirine by Spray drying method. International Journal of Pharmacy and Pharmaceutical Sciences, 7(4), 98–103.

Rashid, R., Kim, D. W., Din, F. U., Mustapha, O., Yousaf, A. M., Park, J. H., Choi, H. G. (2015). Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion. Carbohydrate Polymers, 130, 26–31. https://doi.org/10.1016/j.carbpol.2015.04.071

Saluja, H., Mehanna, A., Panicucci, R., & Atef, E. (2016). Hydrogen bonding: Between strengthening the crystal packing and improving solubility of three haloperidol derivatives. Molecules, 21(6). https://doi.org/10.3390/molecules21060719

Santos, R. M., Mould, S. T., Formánek, P., Paiva, M. C., & Covas, J. A. (2018). Effects of particle size and surface chemistry on the dispersion of graphite nanoplates in polypropylene composites. Polymers, 10(2). https://doi.org/10.3390/polym10020222

Sathigari, S. K., Radhakrishnan, V. K., Davis, V. A., Parsons, D. L., & Babu, R. J. (2012). Amorphous-state characterization of efavirenz-polymer hot-melt extrusion systems for dissolution enhancement. Journal of Pharmaceutical Sciences, 101(9), 3456–3464. https://doi.org/10.1002/jps.23125

Sathyaraj, A., & Palraja, M. (2012). Preparation and comparative evaluation of loratadine solid dispersions with various binders by spray drying technique. International Journal of Research in Pharmacy and Chemistry, 2(1), 37–45.

Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug Solubility: Importance and Enhancement Techniques. ISRN Pharmaceutics, 2012(100 mL), 1–10. https://doi.org/10.5402/2012/195727

Semenov, G. V., Tikhomirov, A. A., & Krasnova, I. S. (2016). The choice of the parameters of vacuum freeze drying to Thermolabile materials with desired quality level. International Journal of Applied Engineering Research, 11(13), 8056–8061.

Shin, M. S., Yu, J. S., Lee, J., Ji, Y. S., Joung, H. J., Han, Y. M., Kang, K. S. (2019). A hydroxypropyl methylcellulose-based solid dispersion of curcumin with enhanced bioavailability and its hepatoprotective activity. Biomolecules, 9(7). https://doi.org/10.3390/biom9070281

Simonazzi, A., Davies, C., Cid, A. G., Gonzo, E., Parada, L., & Bermúdez, J. M. (2018). Preparation and Characterization of Poloxamer 407 Solid Dispersions as an Alternative Strategy to Improve Benznidazole Bioperformance. Journal of Pharmaceutical Sciences, 107(11), 2829–2836. https://doi.org/10.1016/j.xphs.2018.06.027

Singh, A., Worku, Z. A., & Van Den Mooter, G. (2011). Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opinion on Drug Delivery, 8(10), 1361–1378. https://doi.org/10.1517/17425247.2011.606808

Sinha, S., Ali, M., Baboota, S., Ahuja, A., Kumar, A., & Ali, J. (2010). Solid dispersion as an approach for bioavailability enhancement of poorly water-soluble drug ritonavir. AAPS PharmSciTech, 11(2), 518–527. https://doi.org/10.1208/s12249-010-9404-1

Smeets, A., Koekoekx, R., Clasen, C., & Van den Mooter, G. (2018). Amorphous solid dispersions of darunavir: Comparison between spray drying and electrospraying. European Journal of Pharmaceutics and Biopharmaceutics, 130, 96–107. https://doi.org/10.1016/j.ejpb.2018.06.021

Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science, 46(1–2), 1–184. https://doi.org/10.1016/S0079-6425(99)00010-9

Széliga, M. E., & Nacucchio, M. C. (2015). Pharmaceutical products. Pharmaceuticals Policy and Law, 17(1–2), 81–89. https://doi.org/10.3233/PPL-140402

Thakral, N. K., Ray, A. R., Bar-Shalom, D., Eriksson, A. H., & Majumdar, D. K. (2012). Soluplus-solubilized citrated camptothecin - A potential drug delivery strategy in colon cancer. AAPS PharmSciTech, 13(1), 59–66. https://doi.org/10.1208/s12249-011-9720-0

Thiry, J., Broze, G., Pestieau, A., Tatton, A. S., Baumans, F., Damblon, C., Evrard, B. (2016). Investigation of a suitable in vitro dissolution test for itraconazole-based solid dispersions. European Journal of Pharmaceutical Sciences, 85, 94–105. https://doi.org/10.1016/j.ejps.2016.02.002

Ulven, C. (2016). Introduction to Plastics Traditional Plastics. In Chemical Resistance of Engineering Thermoplastics. https://doi.org/10.1016/B978-0-323-47357-6.00021-0

Usmanova, L. S., Ziganshin, M. A., Rakipov, I. T., Lyadov, N. M., Klimovitskii, A. E., Mukhametzyanov, T. A., & Gerasimov, A. V. (2018). Microspherical Particles of Solid Dispersion of Polyvinylpyrrolidone K29-32 for Inhalation Administration. BioMed Research International, 2018. https://doi.org/10.1155/2018/2412156

Van Den Mooter, G. (2012). The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate. Drug Discovery Today: Technologies, 9(2), e79–e85. https://doi.org/10.1016/j.ddtec.2011.10.002

Vasconcelos, T., Sarmento, B., & Costa, P. (2007). Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discovery Today, 12(23–24), 1068–1075. https://doi.org/10.1016/j.drudis.2007.09.005

Vo, C. L. N., Park, C., & Lee, B. J. (2013). Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 85(3 PART B), 799–813. https://doi.org/10.1016/j.ejpb.2013.09.007

Williams, H. D., Trevaskis, N. L., Charman, S. A., Shanker, R. M., Charman, W. N., Pouton, C. W., & Porter, C. J. H. (2013). Strategies to address low drug solubility in discovery and development. Pharmacological Reviews, 65(1), 315–499. https://doi.org/10.1124/pr.112.005660

Wlodarski, K., Sawicki, W., Haber, K., Knapik, J., Wojnarowska, Z., Paluch, M., Tajber, L. (2015). Physicochemical properties of tadalafil solid dispersions - Impact of polymer on the apparent solubility and dissolution rate of tadalafil. European Journal of Pharmaceutics and Biopharmaceutics, 94(May), 106–115. https://doi.org/10.1016/j.ejpb.2015.04.031

Xie, T., & Taylor, L. S. (2017). Effect of Temperature and Moisture on the Physical Stability of Binary and Ternary Amorphous Solid Dispersions of Celecoxib. Journal of Pharmaceutical Sciences, 106(1), 100–110. https://doi.org/10.1016/j.xphs.2016.06.017

Xiong, X., Zhang, M., Hou, Q., Tang, P., Suo, Z., Zhu, Y., & Li, H. (2019). Solid dispersions of telaprevir with improved solubility prepared by co-milling: formulation, physicochemical characterization, and cytotoxicity evaluation. Materials Science and Engineering C, 105(July), 110012. https://doi.org/10.1016/j.msec.2019.110012

Xu, L., Li, S. M., Sunada, H., & Wang, Q. F. (2007). Improvement of dissolution rate of arbidol hydrochloride from solid dispersion prepared with PEG system by fusion method. Journal of Drug Delivery Science and Technology, 17(2), 145–148. https://doi.org/10.1016/S1773-2247(07)50022-5

Xu, Y., Liu, X., Lian, R., Zheng, S., Yin, Z., Lu, Y., & Wu, W. (2012). Enhanced dissolution and oral bioavailability of aripiprazole nanosuspensions prepared by nanoprecipitation/homogenization based on acid-base neutralization. International Journal of Pharmaceutics, 438(1–2), 287–295. https://doi.org/10.1016/j.ijpharm.2012.09.020

Yan, H. X., Zhang, S. S., He, J. H., & Liu, J. P. (2016). Application of ethyl cellulose, microcrystalline cellulose and octadecanol for wax based floating solid dispersion pellets. Carbohydrate Polymers, 148, 143–152. https://doi.org/10.1016/j.carbpol.2016.04.050

Yang, J., Grey, K., & Doney, J. (2010). An improved kinetics approach to describe the physical stability of amorphous solid dispersions. International Journal of Pharmaceutics, 384(1–2), 24–31. https://doi.org/10.1016/j.ijpharm.2009.09.035

Yasuji, T., Takeuchi, H., & Kawashima, Y. (2008). Particle design of poorly water-soluble drug substances using supercritical fluid technologies. Advanced Drug Delivery Reviews, 60(3), 388–398. https://doi.org/10.1016/j.addr.2007.03.025

Yoshida, V. M. H., Balcão, V. M., Vila, M. M. D. C., Oliveira, J. M., Aranha, N., Chaud, M. V., & Gremião, M. P. D. (2015). Zidovudine - Poly(L-lactic acid) solid dispersions with improved intestinal permeability prepared by supercritical antisolvent process. Journal of Pharmaceutical Sciences, 104(5), 1691–1700. https://doi.org/10.1002/jps.24377

Yu, M., Ocando, J. E., Trombetta, L., & Chatterjee, P. (2015).Molecular interaction studies of amorphous solid dispersions of the antimelanoma agent betulinic acid. AAPS PharmSciTech, 16(2), 384–397. https://doi.org/10.1208/s12249-014-0220-x

Zainuddin, R., Zaheer, Z., Sangshetti, J. N., & Momin, M. (2017). Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation*. Drug Development and Industrial Pharmacy, 43(12), 2076–2084. https://doi.org/10.1080/03639045.2017.1371732

Zeng, Q., Ou, L., Zhao, G., Cai, P., Liao, Z., Dong, W., & Liang, X. (2020). Preparation and Characterization of PEG4000 Palmitate/PEG8000 Palmitate-Solid Dispersion Containing the Poorly Water-Soluble Drug Andrographolide. Advances in Polymer Technology, 2020, 1–7. https://doi.org/10.1155/2020/4239207

Zhang, J., Han, R., Chen, W., Zhang, W., Li, Y., Ji, Y., Ouyang, D. (2018). Analysis of the literature and patents on solid dispersions from 1980 to 2015. Molecules, 23(7), 1–19. https://doi.org/10.3390/molecules23071697

Zhao, Y., Xie, X., Zhao, Y., Gao, Y., Cai, C., Zhang, Q., Han, J. (2019). Effect of plasticizers on manufacturing ritonavir/copovidone solid dispersions via hot-melt extrusion: Preformulation, physicochemical characterization, and pharmacokinetics in rats. European Journal of Pharmaceutical Sciences, 127, 60–70. https://doi.org/10.1016/j.ejps.2018.10.020

Zhu, D. (Alan), Zografi, G., Gao, P., Gong, Y., & Zhang, G. G. Z. (2016). Modeling Physical Stability of Amorphous Solids Based on Temperature and Moisture Stresses. Journal of Pharmaceutical Sciences, 105(9), 2932–2939. https://doi.org/10.1016/j.xphs.2016.03.029

Zi, P., Zhang, C., Ju, C., Su, Z., Bao, Y., Gao, J., Zhang, C. (2019). Solubility and bioavailability enhancement study of lopinavir solid dispersion matrixed with a polymeric surfactant - Soluplus. European Journal of Pharmaceutical Sciences, 134(March), 233–245. https://doi.org/10.1016/j.ejps.2019.04.022

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.