Abstract
Automation technology has grown in a rapid pace recently. One of the technology that is growing rapidly right now is the Internet of Things or IoT. IoT consist of many devices, and one of the IoT device that are popular right now is called the smart home device. This smart home device can be use to make the house of the user be smart and can be use to save energy for efficiency for the daily life of the user, such as electricity and water that kan provide a negative impact on the environment if used extensively. This smart home device can help to make the energy expense much more efficient. Therefore, this study aims to see and examine the relation between pro-environmental behavior (environmental beliefs and concern), the moderating variable of materialism, perceived privacy risk and trust that can influenced the intention to use of smart home device. This study is an empirical study with quantitative research method. The respondent used in this study is live in Jabodetabek, age above 18 years old, tech savvy, and know the concept of smart home technology but does not have the smart home device. The sample use in this study are 294 samples. The data collected was tested using and analyzed using SEM with LISREL 8.5. The result of the research shows that environmental concern, perceived usefulness, and trust has a positive and significant effect towards intention to use smart home device. For the relationship between environmental beliefs and environmental concern, it was also has positif and significant effect. The result also shown that perceived privacy risk has a negatif significant effect towards trust of smart home device. The result of this research are important for the development of smart home market in Indonesia.
Bahasa Abstract
Teknologi automasi sudah berkembang dengan pesat pada belakangan ini. Teknologi seperti Internet of Things (biasa disebut dengan sebutan IoT), mempunyai beberapa perangkat tersendiri, salah satu perangkatnya yaitu adalah smart home system. Smart home sistem ini dapat digunakan untuk membuat rumah menjadi pintar dan juga dapat digunakan untuk menghemat penggunaan energi secara efisien dalam rumah di kehidupan sehari-hari, seperti listrik dan air yang dapat mengakibatkan dampak negatif untuk lingkungan jika digunakan terlalu berlebihan. Penelitian yang dilakukan merupakan penelitian empiris dengan metode penelitian kuantitatif. Penyebaran kuesioner dilakukan di Indonesia dengan kriteria responden yang berdomisili di Jabodetabek, berumur 18 tahun ke atas, menggunakan internet lebih dari tiga jam per harinya, dan belum mempunyai perangkat smart home. Adapun jumlah sampel yang digunakan dalam penelitian ini adalah sebesar 294 sampel. Pengolahan data menggunakan SEM dengan software LISREL 8.5. Hasil Penelitian menunjukkan bahwa environmental concern, perceived usefulness, dan trust mempengaruhi intention to use secara positif dan signifikan. Kemudian ditemukan juga hubungan antara environmental beliefs dan environmental concern mempunyai hubungan positif yang signifikan. Untuk perceived privacy risk, ditemukan bahwa variabel tersebut mempunyai hubungan negatif yang signifikan terhadap trust untuk perangkat smart home. Hasil penelitian ini penting untuk perkembangan dalam pasar smart home di Indonesia.
References
Arradian, D. (2021, April 19). 4 Alasan Mengapa Tahun Ini Smart Home Akan Meroket di Indonesia. Sindonews.Com. https://tekno.sindonews.com/read/401438/123/4-alasan-mengapa-tahun-ini-smart-home-akan-meroket-di-indonesia-1618808650
Baudier, P., Ammi, C., Deboeuf-rouchon, M., Vinci, L. De, Universitaire, P., Vinci, L. De, La, P., & Cedex, D. (2020). Technological Forecasting & Social Change Smart home : Highly-educated students ’ acceptance. Technological Forecasting & Social Change, 153(January 2018), 119355. https://doi.org/10.1016/j.techfore.2018.06.043
Bawack, R. E., Wamba, S. F., & Carillo, K. D. A. (2021). Exploring the role of personality, trust, and privacy in customer experience performance during voice shopping: Evidence from SEM and fuzzy set qualitative comparative analysis. International Journal of Information Management, 58(July 2020). https://doi.org/10.1016/j.ijinfomgt.2021.102309
Cambridge. (n.d.). in Cambridge.com English Dictionary. Cambridge.Com Dictionary. Retrieved July 21, 2022, from https://dictionary.cambridge.org/dictionary/english/domestic-appliance
Cooper, D., & Schindler, P. (2014). Business Research Methods: 12th Edition - Donald Cooper, Pamela Schindler. McGraw-Hill Higher Education, 24–47.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly: Management Information Systems, 13(3), 319–339. https://doi.org/10.2307/249008
Ford, R., Pritoni, M., Sanguinetti, A., & Karlin, B. (2017). Categories and functionality of smart home technology for energy management. https://doi.org/10.1016/j.buildenv.2017.07.020
Gao, L., & Bai, X. (2014). A unified perspective on the factors influencing consumer acceptance of internet of things technology. Asia Pacific Journal of Marketing and Logistics, 26(2), 211–231. https://doi.org/10.1108/APJML-06-2013-0061
Gultom, R. N., & Asvial, M. (2020). Analysis of Affecting Technology Adoption Factors for Smart Home Services in Jabodetabek, Indonesia. Proceedings - 2020 International Seminar on Intelligent Technology and Its Application: Humanification of Reliable Intelligent Systems, ISITIA 2020, 326–331. https://doi.org/10.1109/ISITIA49792.2020.9163664
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate Data Analysis. In Pearson Education Limited.
Hamzah, M. I., & Tanwir, N. S. (2021). Do pro-environmental factors lead to purchase intention of hybrid vehicles? The moderating effects of environmental knowledge. Journal of Cleaner Production, 279. https://doi.org/10.1016/j.jclepro.2020.123643
Hong, A., Nam, C., & Kim, S. (2020). What will be the possible barriers to consumers’ adoption of smart home services? Telecommunications Policy, 44(2). https://doi.org/10.1016/j.telpol.2019.101867
Howe, P. D., Mildenberger, M., Marlon, J. R., & Leiserowitz, A. (2015). Geographic variation in opinions on climate change at state and local scales in the USA. Nature Climate Change, 5(6), 596–603. https://doi.org/10.1038/NCLIMATE2583
Hsieh, S. H., & Lee, C. T. (2021). Hey Alexa: examining the effect of perceived socialness in usage intentions of AI assistant-enabled smart speaker. Journal of Research in Interactive Marketing, 15(2), 267–294. https://doi.org/10.1108/JRIM-11-2019-0179
Huang, H. (2016). Media use, environmental beliefs, self-efficacy, and pro-environmental behavior. Journal of Business Research, 69(6), 2206–2212. https://doi.org/10.1016/j.jbusres.2015.12.031
Hubert, M., Blut, M., Brock, C., Zhang, R. W., Koch, V., & Riedl, R. (2019). The influence of acceptance and adoption drivers on smart home usage. European Journal of Marketing, 53(6), 1073–1098. https://doi.org/10.1108/EJM-12-2016-0794
Katadata. (2021). 6 Produk ramah lingkungan yang paling banyak dibeli masyarakat | Databoks. In Databoks.Katadata.Co.Id. https://databoks.katadata.co.id/datapublish/2021/08/24/6-produk-ramah-lingkungan-yang-paling-banyak-dibeli-masyarakat
Kemp, S. (2021). Digital in Indonesia: All the Statistics You Need in 2021 — DataReportal – Global Digital Insights. https://datareportal.com/reports/digital-2021-indonesia
Kilbourne, W., & Pickett, G. (2008). How materialism affects environmental beliefs, concern, and environmentally responsible behavior. Journal of Business Research, 61(9), 885–893. https://doi.org/10.1016/j.jbusres.2007.09.016
Klobas, J. E., McGill, T., & Wang, X. (2019). How perceived security risk affects intention to use smart home devices: A reasoned action explanation. Computers and Security, 87. https://doi.org/10.1016/j.cose.2019.101571
Koo, C., Chung, N., & Nam, K. (2015). Assessing the impact of intrinsic and extrinsic motivators on smart green IT device use: Reference group perspectives. International Journal of Information Management, 35(1), 64–79. https://doi.org/10.1016/j.ijinfomgt.2014.10.001
Kowalczuk, P. (2018). Consumer acceptance of smart speakers: a mixed methods approach. Journal of Research in Interactive Marketing, 12(4), 418–431. https://doi.org/10.1108/JRIM-01-2018-0022
Lee, Y. ki, Kim, S., Kim, M. seong, & Choi, J. gu. (2014). Antecedents and interrelationships of three types of pro-environmental behavior. Journal of Business Research, 67(10), 2097–2105. https://doi.org/10.1016/j.jbusres.2014.04.018
Maichum, K., Parichatnon, S., & Peng, K. C. (2016). Application of the extended theory of planned behavior model to investigate purchase intention of green products among Thai consumers. Sustainability (Switzerland), 8(10). https://doi.org/10.3390/su8101077
Mamonov, S., & Benbunan-Fich, R. (2021). Unlocking the smart home: exploring key factors affecting the smart lock adoption intention. Information Technology and People, 34(2), 835–861. https://doi.org/10.1108/ITP-07-2019-0357
Marikyan, D., Papagiannidis, S., & Alamanos, E. (2019). A systematic review of the smart home literature: A user perspective. Technological Forecasting and Social Change, 138, 139–154. https://doi.org/10.1016/j.techfore.2018.08.015
Mukherjee, B., & Chandra, B. (2021). Unravelling the differential effects of pride and guilt along with values on green intention through environmental concern and attitude. Kybernetes. https://doi.org/10.1108/K-04-2021-0336
Naalchi, A. K. (2020). Green purchase intention: A conceptual model of factors influencing green purchase of Iranian consumers. Journal of Islamic Marketing, 11(6), 1389–1403. https://doi.org/10.1108/JIMA-06-2019-0120
Nikou, S. (2019). Factors driving the adoption of smart home technology: An empirical assessment. Telematics and Informatics, 45(September). https://doi.org/10.1016/j.tele.2019.101283
Peetoom, K. K. B., Lexis, M. A. S., Joore, M., Dirksen, C. D., & De Witte, L. P. (2015). Literature review on monitoring technologies and their outcomes in independently living elderly people. Https://Remote-Lib.Ui.Ac.Id:2075/10.3109/17483107.2014.961179, 10(4), 271–294. https://doi.org/10.3109/17483107.2014.961179
Qiao, K., & Dowell, G. (2022). Environmental concerns, income inequality, and purchase of environmentally-friendly products: A longitudinal study of US counties (2010-2017). Research Policy, 51(4). https://doi.org/10.1016/j.respol.2021.104443
Rosslin, J. R., & Tai-hoon, K. (2010). Applications, Systems and Methods in Smart Home Technology : A Review. International Journal of Advanced Science and Technology, 15(November), 37–48.
Salimon, M. G., Gorondutse, A. H., & Abdullah, H. H. (2018). User adoption of Smart Homes Technology in Malaysia: Integration TAM 3, TPB, UTAUT 2 and extension of their constructs for a better prediction. Journal of Business and Management, 20(4), 60–69. https://doi.org/10.9790/487X-2004016069
Saunders, M. N. K., Lewis, P., & Thornhill, A. (2016). Understanding Research Philosophy and Approaches to Theory Development. Research Methods for Business Students. Harlow: Pearson Education, 122–161. https://books.google.com/books/about/Research_Methods_for_Business_Students.html?id=0DHFsgEACAAJ
Schill, M., Godefroit-Winkel, D., Diallo, M. F., & Barbarossa, C. (2019). Consumers’ intentions to purchase smart home objects: Do environmental issues matter? Ecological Economics, 161(March), 176–185. https://doi.org/10.1016/j.ecolecon.2019.03.028
Schomakers, E. M., Biermann, H., & Ziefle, M. (2021). Users’ Preferences for Smart Home Automation – Investigating Aspects of Privacy and Trust. Telematics and Informatics, 64(July). https://doi.org/10.1016/j.tele.2021.101689
Shuhaiber, A., & Mashal, I. (2019). Understanding users’ acceptance of smart homes. Technology in Society, 58(January), 1–9. https://doi.org/10.1016/j.techsoc.2019.01.003
Statista. (2021). Smart Home - worldwide | Statista Market Forecast. Statista. https://www.statista.com/outlook/dmo/smart-home/belgium
Steg, L., & Vlek, C. (2009). Encouraging pro-environmental behaviour: An integrative review and research agenda. Journal of Environmental Psychology, 29(3), 309–317. https://doi.org/10.1016/J.JENVP.2008.10.004
Stern, P. C. (2000). Toward a coherent theory of environmentally significant behavior. Journal of Social Issues, 56(3), 407–424. https://doi.org/10.1111/0022-4537.00175
Vimalkumar, M., Sharma, S. K., Singh, J. B., & Dwivedi, Y. K. (2021). ‘Okay google, what about my privacy?’: User’s privacy perceptions and acceptance of voice based digital assistants. Computers in Human Behavior, 120(March), 106763. https://doi.org/10.1016/j.chb.2021.106763
Wu, J., Liao, H., Wang, J. W., & Chen, T. (2019). The role of environmental concern in the public acceptance of autonomous electric vehicles: A survey from China. Transportation Research Part F: Traffic Psychology and Behaviour, 60, 37–46. https://doi.org/10.1016/j.trf.2018.09.029
Yang, H., Lee, H., & Zo, H. (2017). User acceptance of smart home services: An extension of the theory of planned behavior. Industrial Management and Data Systems, 117(1), 68–89. https://doi.org/10.1108/IMDS-01-2016-0017
Yasirandi, R., Lander, A., Sakinah, H. R., & Insan, I. M. (2020). IoT Products Adoption for Smart Living in Indonesia: Technology Challenges and Prospects. 2020 8th International Conference on Information and Communication Technology, ICoICT 2020, June 2020. https://doi.org/10.1109/ICoICT49345.2020.9166200
Yus, R., & Pappachan, P. (2022, March 14). Smart devices spy on you – 2 computer scientists explain how the Internet of Things can violate your privacy. The Conversation. https://theconversation.com/smart-devices-spy-on-you-2-computer-scientists-explain-how-the-internet-of-things-can-violate-your-privacy-174579
Recommended Citation
Elian, Adrian Adhe and Salehudin, Imam
(2022)
"Hey Google: Does Environmental Beliefs and Perceived Privacy Risk Influence Potential User’s Intention to Use a Smart Home System in Indonesia?,"
Smart City: Vol. 2:
Iss.
1, Article 5.
DOI: 10.56940/sc.v2.i1.5
Available at:
https://scholarhub.ui.ac.id/smartcity/vol2/iss1/5