The Clitoria ternatea flower, known as bunga telang in Indonesia, is commonly mixed with food and beverages to provide a natural blue colour. Aside from its popular culinary use, it is a traditional medicine in Indonesia for diseases in the eyes, urinary tract and skin, as well as functioning as an anti-toxin. Furthermore, recent advances in science and technology have revealed that the C. ternatea flower contains a high level of polyphenol compounds that possess anticancer activity, including saponins, tannins, steroids, triterpenoids, kaempferol, and quercetin. This review aims to identify and analyse recent articles regarding the phytochemical activities of C. ternatea flower extract as an anticancer agent. The literature on main databases from 2011 to 2021 was searched systematically using the keywords “Anticancer activity of Clitorea ternatea” and “Phytochemical activities of Clitorea ternatea flower extract against cancer cells”. The various extracts of C. ternatea flower display a moderate cytotoxic, IC50 = 21 µg/mL - 200 µg/mL, for many cancer cell lines, such as MCF-7, MDA-MB-231, CaoV-3, HEp-G2 in aquadest extract and the DLA cell line in petroleum ether extract. The bioactive compounds responsible for the anticancer effect include ternatins, delphinidin, kaempferol, quercetin, sitosterol, and tocopherols. In addition, there have been no reports of any toxic effect on normal cells (Hs27) and oral consumption in mice. According to many studies, the extract is active on multi-molecular targets, with the most conclusive effect on polymerase enzymes, whose inhibition can be an important therapeutic strategy to treat hyperproliferation in cell cancer. Therefore, the findings suggest a potential application of C. ternatea for cancer treatment.


Abbas, W., Kumar, A., & Herbein, G. (2015). The eEF1A proteins: At the crossroads of oncogenesis, apoptosis, and viral infections. Frontiers in Oncology, 5(APR), 1–10. https://doi.org/10.3389/fonc.2015.00075

Abraham, A., Kattoor, A. J., Saldeen, T., & Mehta, J. L. (2019). Vitamin E and its anticancer effects. Critical Reviews in Food Science and Nutrition, 59(17), 2831–2838. https://doi.org/10.1080/10408398.2018.1474169

Al-Snafi, A. E. (2016). Pharmacological importance of Clitoria ternatea-A review. IOSR Journal of Pharmacy, 6(3), 68–83. www.iosrphr.org

Alshamrani, S., Mobasher, M., Safhi, F. A., & Awad, N. (2022). Antiproliferative effect of Clitoria ternatea ethanolic extract against colorectal, breast, and medullary thyroid cancer cell lines. Seperations, 9(331), 1–15. https://doi.org/10.3390/separations9110331

Aslan, E., Guler, C., & Adem, S. (2016). In vitro effects of some flavonoids and phenolic acids on human pyruvate kinase isoenzyme M2. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(2), 314–317. https://doi.org/10.3109/14756366.2015.1022173

Asysyifa, A., Agustiningtyas, A., & Nurgina, A. I. (2020). Butterfly pea (Clitoria ternatea Linn.) flower extract prevents MCF-7 HER2-positive breast cancer cell metastasis in-vitro. Annals of Oncology, 31, S1266. https://doi.org/10.1016/j.annonc.2020.10.083

Bae, H., Song, G., & Lim, W. (2020). Stigmasterol causes ovarian cancer cell apoptosis by inducing endoplasmic reticulum and mitochondrial dysfunction. Pharmaceutics,12(6).https://doi.org/10.3390/pharmaceutics12060488

Balaji, K.S., & Shivaprakash, P., Preethi, S.D., Chandrashekara, K.T., Siddalingaiah, L., Rangappa, K.S., Jayarama,S. (2016). Angio suppressive effect of Clitoria ternatea flower extract is mediated by HIF-1α and Down Regulation of VEGF in murine carcinoma model. Medicinal Chemistry, 6(7), 515–520. https://doi. org/10.4172/2161-0444.1000392

Carelli, J. D., Sethofer, S. G., Smith, G. A., Miller, H. R., Simard, J. L., Merrick, W. C., Jain, R. K., Ross, N. T., & Taunton, J. (2015). Ternatin and improved synthetic variants kill cancer cells by targeting the elongation factor-1A ternary complex. ELife, 4(DECEMBER2015), 1–22. https://doi.org/10.7554/eLife.10222

Chen, A. Y., & Chen, Y. C. (2013). A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. National Institute of Health, 138(4), 515–525. https://doi.org/10.1016/j.foodchem.2012.11.139.A

Chouhan, S., Sharma, K., Zha, J., Guleria, S., & Koffas, M. A. G. (2017). Recent advances in the recombinant biosynthesis of polyphenols. Frontiers in Microbiology, 8(NOV), 1–16. https://doi.org/10.3389/fmicb.2017.02259

Crozier, A., Jaganath, I. B., & Clifford, M. N. (2009). Dietary phenolics: Chemistry, bioavailability and effects on health. Natural Product Reports, 26(8), 1001–1043. https://doi.org/10.1039/b802662a

Cui, Q., Wen, S., & Huang, P. (2017). Targeting cancer cell mitochondria as a therapeutic approach: Recent updates. Future Medicinal Chemistry, 9(9), 929–949. https://doi.org/10.4155/fmc-2017-0011

Das, A., Shanmuga Priya, G., Soundariya, S., Deepesh, P., Edwin, A. R., Vihashinee, E., Rubiga, A., Megavarthini, S., Eswaran, R., & Bindhu, J. (2020). Antibacterial and in vitro anticancer study of methanol extracts of Clitoria ternatea leaves. Journal of Natural Remedies, 20(2), 96–102. https://doi.org/10.18311/jnr/2020/24381

Dave, A., Parande, F., Park, E.-J., & Pezzuto, J. M. (2020). Phytochemicals and cancer chemoprevention. Journal of Cancer Metastasis and Treatment, 2020. https://doi.org/10.20517/2394-4722.2020.106

Defiani, M. R., & Kriswiyanti, E. (2019). Floral diversity in Mincidan Village, Klungkung, Bali to support ecotourism. Simbiosis, 7(1), 14. https://doi.org/10.24843/jsimbiosis.2019.v07.i01.p04

Dimitrić Marković, J. M., Milenković, D., Amić, D., Popović-Bijelić, A., Mojović, M., Pašti, I. A., & Marković, Z. S. (2014). Energy requirements of the reactions of kaempferol and selected radical species in different media: Towards the prediction of the possible radical scavenging mechanisms. Structural Chemistry, 25(6), 1795–1804. https://doi.org/10.1007/s11224-014-0453-z

Dinicola, S., Unfer, V., Facchinetti, F., Soulage, C. O., Greene, N. D., Bizzarri, M., Laganà, A. S., Chan, S. Y., Bevilacqua, A., Pkhaladze, L., Benvenga, S., Stringaro, A., Barbaro, D., Appetecchia, M., Aragona, C., Espinola, M. S. B., Cantelmi, T., Cavalli, P., Chiu, T. T., … Wdowiak, A. (2021). Inositols: From established knowledge to novel approaches. International Journal of Molecular Sciences, 22(19), 1–30. https://doi.org/10.3390/ijms221910575

Duan, L., Ding, W., Liu, X., Cheng, X., Cai, J., Hua, E., & Jiang, H. (2017). Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae. Microbial Cell Factories, 16(1), 1–10. https://doi.org/10.1186/s12934-017-0774-x

Ezzudin, R., & Rabeta, M. S. (2018). A potential of telang tree (Clitoria ternatea) in human health. Food Research, 2(5), 415–420. https://doi.org/10.26656/fr.2017.2(5).073

Fan, A., & Sharp, P. P. (2021). Inhibitors of Eukaryotic Translational Machinery as Therapeutic Agents. Journal of Medicinal Chemistry, 64(5), 2436–2465. https://doi.org/10.1021/acs.jmedchem.0c01746

Foley, D. A., O’Callaghan, Y., O’Brien, N. M., McCarthy, F. O., & Maguire, A. R. (2011). Synthesis and characterization of stigmasterol oxidation products. Journal of Agricultural and Food Chemistry, 58(2), 1165–1173. https://doi.org/10.1021/jf9024745

Gao, Y., Yin, J., Rankin, G. O., & Chen, Y. C. (2018). Kaempferol induces G2/M cell cycle arrest via checkpoint kinase 2 and promotes apoptosis via death receptors in human ovarian carcinoma A2780/CP70 Cells. Molecules, 23(5). https://doi.org/10.3390/molecules23051095

GLOBOCAN. (2020). Cancer incident in Indonesia. International Agency for Research on Cancer, 858, 1–2. https://gco.iarc.fr/today/data/factsheets/populations/360-indonesia-fact-sheets.pdf

Guimarães, I. d. S. , Daltoé, R. D. , Herlinger, A., Madeira, K. P. , Ladislau, T., Valadão, I., Junior, P. C. M. L. , Fernandes Teixeira, S., Amorim, G. M. , Santos, D. Z. d. , Demuth, K. R. , & Rangel, L. B. A. (2013). Conventional Cancer Treatment. In (Ed.), Cancer Treatment - Conventional and Innovative Approaches. IntechOpen. https://doi.org/10.5772/55282

Gollen, B., Mehla, J., & Gupta, P. (2018). Clitoria ternatea Linn: A Herb with potential pharmacological activities: Future prospects as therapeutic herbal medicine. Journal of Pharmacological Reports, 3(1), 1–8.

Gore, L., DeGregori, J., & Porter, C. C. (2013). Targeting developmental pathways in children with cancer: What price success?. The Lancet Oncology, 14(2), e70–e78. https://doi.org/10.1016/S1470-2045(12)70530-2

Haryanti, E. S., & Diba, F. (2015). Etnobotani tumbuhan berguna oleh masyarakat sekitar kawasan kph model kapuas hulu. Jurnal Hutan Lestari, 3(3), 434–445.

Hasanah, S. N., Widowati, L. (2016). Jamu pada pasien tumor/kanker sebagai terapi komplementer. Jurnal Kefarmasian Indonesia, 6(1), 49–59.

Hussain, Y., Khan, H., Alsharif, K. F., Khan, A. H., Aschner, M., & Saso, L. (2022). Review the therapeutic potential of kaemferol and other naturally occurring polyphenols might be modulated by Nrf2-ARE signaling Pathway: current status and future direction. Molecules, 27(13). https://doi.org/10.3390/molecules27134145

Imran, M., Salehi, B., Sharifi-rad, J., Gondal, T. A., Arshad, M. U., Khan, H., & Guerreiro, S. G. (2019). Kaempferol : A key emphasis to its anticancer potential. Molecules, 227(24), 1–16.

Iamsaard, S., Burawat, J., Kanla, P., Arun, S., Sukhorum, W., Sripanidkulchai, B., Uabun-Dit, N., Wattathorn, J., Hipkaeo, W., Fongmoon, D., & Kondo, H. (2014). Antioxidant activity and protective effect of Clitoria ternatea flower extract on testicular damage induced by ketoconazole in rats. Journal of Zhejiang University: Science B, 15(6), 548–555. https://doi.org/10.1631/jzus.B1300299

Irawan, E., Rahayuwati, L., Yani, D. I., Keperawatan, F., Keperawatan, F., & Padjadjaran, U. (2017). Hubungan penggunaan terapi modern dan komplementer terhadap kualitas hidup pasien kanker payudara. Journal Nursing Padjadjaran, 5(April), 19–28.

Islami, F., Miller, K. D., & Jemal, A. (2018). Cancer burden in the United States—a review. Annals of Cancer Epidemiology, 1, 1–1. https://doi.org/10.21037/ace.2018.08.02

Jacob, L., & Latha, M. S. (2013). Anticancer activity of Clitoria ternatea linn. Against dalton’s lymphoma. International Journal of Pharmacognosy and Phytochemical Research, 4(4), 107–112.

Jeyaraj, E. J., Lim, Y. Y., & Choo, W. S. (2020). Extraction methods of butterfly pea (Clitoria ternatea) flower and biological activities of its phytochemicals. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-020-04745-3

Jiang, L., Zhao, X., Xu, J., Li, C., Yu, Y., Wang, W., & Zhu, L. (2019). The protective effect of dietary phytosterols on cancer risk: A systematic meta-analysis. Journal of Oncology, 2019. https://doi.org/10.1155/2019/7479518

Kannappan, R., Gupta, S. C., Kim, J. H., & Aggarwal, B. B. (2012). Tocotrienols fight cancer by targeting multiple cell signaling pathways. Genes and Nutrition, 7(1), 43–52. https://doi.org/10.1007/s12263-011-0220-3

Kim, Y. S., Li, X. F., Kang, K. H., Ryu, B. M., & Kim, S. K. (2014). Stigmasterol isolated from marine microalgae Navicula incerta induces apoptosis in human hepatoma HepG2 cells. BMB Reports, 47(8), 433–438. https://doi.org/10.5483/BMBRep.2014.47.8.153

Kumar, S., Huang, J., Abbassi-Ghadi, N., MacKenzie, H. A., Veselkov, K. A., Hoare, J. M., Lovat, L. B., Spanel, P., Smith, D., & Hanna, G. B. (2015). Mass spectrometric analysis of exhaled breath for the identification of volatile organic compound biomarkers in esophageal and gastric adenocarcinoma. Annals of Surgery, 262(6), 981–990. https://doi.org/10.1097/SLA.0000000000001101

Ladislau, T., Madeira, P. K., Daltoé, D. R., Guimarães, S. I., Teixeira, F. S., Lyra-Júnior, CM. P., Valadão, C. I., Rangel, BA. L. and Herlinger, L. A. (2013). Target Cancer Therapy. Cancer Treatment - Conventional and Innovative Approaches. https://doi.org/10.5772/55284

Lakshan, S. A. T., Jayanath, N. Y., Abeysekera, W. P. K. M., & Abeysekera, W. K. S. M. (2019). A commercial potential blue pea (Clitoria ternatea L.) flower extract incorporated beverage having functional properties. Evidence-Based Complementary and Alternative Medicine, 2019. https://doi.org/10.1155/2019/2916914

Lawrence H. Kushi, S., Colleen Doyle, MS, R., Marji McCullough, ScD, R., Cheryl L. Rock, PhD, R., Wendy Demark-Wahnefried, PhD, R., Elisa V. Bandera, MD, P., Susan Gapstur, PhD, M., Alpa V. Patel, P., Andrews9;, K., & Ted Gansler, MD, M. (2019). Reducing the risk of cancer with healthy food choices and physical activity. American Cancer Society, 30–67. https://doi.org/10.3322/caac.20140.

Li, X., Kim, Y. B., Kim, Y., Zhao, S., Kim, H. H., Chung, E., Lee, J. H., & Park, S. U. (2013). Differential stress-response expression of two flavonol synthase genes and accumulation of flavonols in tartary buckwheat. Journal of Plant Physiology, 170(18), 1630–1636. https://doi.org/10.1016/j.jplph.2013.06.010

Liu, B., Qu, L., & Yan, S. (2015). Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell International, 15(1), 2–7. https://doi.org/10.1186/s12935-015-0260-7

Llaverias, G., Escolà-Gil, J. C., Lerma, E., Julve, J., Pons, C., Cabré, A., Cofán, M., Ros, E., Sánchez-Quesada, J. L., & Blanco-Vaca, F. (2013). Phytosterols inhibit the tumor growth and lipoprotein oxidizability induced by a high-fat diet in mice with inherited breast cancer. Journal of Nutritional Biochemistry, 24(1), 39–48. https://doi.org/10.1016/j.jnutbio.2012.01.007

Marpaung, A. M. (2020). Tinjauan manfaat bunga telang (Clitoria ternatea L.) bagi kesehatan manusia. Journal of Functional Food and Nutraceutical, 1(2), 63–85. https://doi.org/10.33555/jffn.v1i2.30

Marín, L., Gutiérrez-del-Río, I., Entrialgo-Cadierno, R., Claudio, Villar, J., & Lombó, F. (2018). De novo biosynthesis of myricetin, kaempferol and quercetin in Streptomyces albus and Streptomyces coelicolor. PLoS ONE, 13(11), 1–16. https://doi.org/10.1371/journal.pone.0207278

Mukherjee, P. K., Kumar, V., Kumar, N. S., & Heinrich, M. (2008). The Ayurvedic medicine Clitoria ternatea-from traditional use to scientific assessment. Journal of Ethnopharmacology, 120(3), 291–301. https://doi.org/10.1016/j.jep.2008.09.009

Müller-Wirtz, L. M., Kiefer, D., Knauf, J., Floss, M. A., Doneit, J., Wolf, B., Maurer, F., Sessler, D. I., Volk, T., Kreuer, S., & Fink, T. (2021). Differential response of pentanal and hexanal exhalation to supplemental oxygen and mechanical ventilation in rats. Molecules, 26(9), 1–9. https://doi.org/10.3390/molecules26092752

AmeliMojarad, M., AmeliMojarad, M., & Pourmahdian, A. (2022). The inhibitory role of stigmasterol on tumor growth by inducing apoptosis in Balb/c mouse with spontaneous breast tumor (SMMT). BMC Pharmacology and Toxicology, 23(1), 1–7. https://doi.org/10.1186/s40360-022-00578-2

Nguyen, N. H., Ta, Q. T. H., Pham, Q. T., Luong, T. N. H., Van Trung Phung, T., Duong, H.-H., & Vo, V. G. (2020). Anticancer activity of novel plant extracts and compounds from Adenosma bracteosum (Bonati) in human lung and liver cancer cells. Molecules, 25(2912), 1–16.

Noda, N., Yoshioka, S., Kishimoto, S., Nakayama, M., Douzono, M., Tanaka, Y., & Aida, R. (2017). Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Science Advances, 3(7), 1–11. https://doi.org/10.1126/sciadv.1602785

O’Callaghan, Y., McCarthy, F. O., & O’Brien, N. M. (2014). Recent advances in Phytosterol oxidation products. Biochemical and Biophysical Research Communications, 446(3), 786–791. https://doi.org/10.1016/j.bbrc.2014.01.148

Oguis, G. K., Gilding, E. K., Jackson, M. A., & Craik, D. J. (2019). Butterfly pea (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine. Frontiers in Plant Science, 10(May), 1–23. https://doi.org/10.3389/fpls.2019.00645

Oh, Y. T., Yue, P., Wang, D., Tong, J. S., Chen, Z. G., Khuri, F. R., & Sun, S. Y. (2015). Suppression of death receptor 5 enhances cancer cell invasion and metastasis through activation of caspase-8/TRAF2-mediated signaling. Oncotarget, 6(38), 41324–41338. https://doi.org/10.18632/oncotarget.5847

Okitsu, N., Noda, N., Chandler, S., & Tanaka, Y. (2018). Flower Color and Its Engineering by Genetic Modification. In J. Van Huylenbroek (Ed.), Handbook pf Plant Breeding (11th ed., pp. 29–62). Springer International Publishing. https://doi.org/10.1007/978-3-319-90698-0_3

Pardo-Botello, R., Chamizo-Calero, F., Monago-Maraña, O., Rodríguez-Corchado, R., de la Torre-Carreras, R., & Galeano-Díaz, T. (2022). Evaluation of hydrophilic and lipophilic antioxidant capacity in spanish tomato paste: Usefulness of front-face total fluorescence signal combined with parafac. Food Analytical Methods, 15(4), 981–992. https://doi.org/10.1007/s12161-021-02175-1

Pertuzatti, P. B., Barcia, M. T., Rodrigues, D., Da Cruz, P. N., Hermosín-Gutiérrez, I., Smith, R., & Godoy, H. T. (2014). Antioxidant activity of hydrophilic and lipophilic extracts of Brazilian blueberries. Food Chemistry, 164, 81–88. https://doi.org/10.1016/j.foodchem.2014.04.114

Phuong, N. T. M., Van Quang, N., Mai, T. T., Anh, N. V., Kuhakarn, C., Reutrakul, V., & Bolhuis, A. (2017). Antibiofilm activity of α-mangostin extracted from Garcinia mangostana L. against Staphylococcus aureus. Asian Pacific Journal of Tropical Medicine, 10(12), 1154–1160. https://doi.org/10.1016/j.apjtm.2017.10.022

Ponnusamy, S., Gnanaraj, W. E., & Antonisamy, J. M. (2015). Flavonoid profile of Clitoria ternatea Linn. Majalah Obat Tradisional, 19(1), 1–5. https://doi.org/10.22146/tradmedj.8083

Pratheeshkumara, P., Son, Y.-O., Padmaja, D. S., Roy, R. V., Hiltron, J. A., Wang, L., Kim, Do., Dai, J., Asha, P., Zhang, Z., Wang, Y., & Shi, X. (2014). Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways. Toxicology and Applied Pharmacology, 281(2), 230–241. https://doi.org/10.1016/j.taap.2014.10.008

Purba, E. C. (2020). Kembang telang (Clitoria ternatea L.): pemanfaatan dan bioaktivitas. EduMatSains, 4(2), 111–124.

Rana, P., Murmu, N., Padhan, S. K., & Sahu, S. N. (2020). Butterfly pea (Clitoria ternatea) extract as a green analytical tool for selective colorimetric detection of bisulphate (HSO4−) ion in aqueous medium. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 237, 118376. https://doi.org/10.1016/j.saa.2020.118376

Ravishankar, D., Rajora, A. K., Greco, F., & Osborn, H. M. I. (2013). Flavonoids as prospective compounds for anti-cancer therapy. The International Journal of Biochemistry & Cell Biology, 45(12), 2821–2831. https://doi.org/10.1016/j.biocel.2013.10.004

Rizeq, B., Gupta, I., Ilesanmi, J., AlSafran, M., Rahman, M. D. M., & Ouhtit, A. (2020). The power of phytochemicals combination in cancer chemoprevention. Journal of Cancer, 11(15), 4521–4533. https://doi.org/10.7150/jca.34374

Rumgay, H., Arnold, M., Ferlay, J., Lesi, O., Cabasag, C. J., Vignat, J., Laversanne, M., McGlynn, K. A., & Soerjomataram, I. (2022). Global burden of primary liver cancer in 2020 and predictions to 2040. Journal of Hepatology, 77(6), 1598–1606. https://doi.org/10.1016/j.jhep.2022.08.021

Salehi, B., Quispe, C., Sharifi-Rad, J., Cruz-Martins, N., Nigam, M., Mishra, A. P., Konovalov, D. A., Orobinskaya, V., Abu-Reidah, I. M., Zam, W., Sharopov, F., Venneri, T., Capasso, R., Kukula-Koch, W., Wawruszak, A., & Koch, W. (2021). Phytosterols: From preclinical evidence to potential clinical applications. Frontiers in Pharmacology, 11(January). https://doi.org/10.3389/fphar.2020.599959

Salleh, R. M., Ong, M. T., & Neda, G. D. (2013). Chemical composition and anti-proliferative properties of flowers of Clitoria Ternatea. International Food Research Journal, 20(3), 1229–1234.

Samec, M., Liskova, A., Koklesova, L., Mersakova, S., Strnadel, J., Kajo, K., Pec, M., Zhai, K., Smejkal, K., Mirzaei, S., Hushmandi, K., Ashrafizadeh, M., Saso, L., Brockmueller, A., Shakibaei, M., Büsselberg, D., & Kubatka, P. (2021). Flavonoids targeting HIF-1: Implications on cancer metabolism. Cancers, 13(1), 1–27. https://doi.org/10.3390/cancers13010130

Sánchez-Murcia, P. A., Cortés-Cabrera, Á., & Gago, F. (2017). Structural rationale for the cross-resistance of tumor cells bearing the A399V variant of elongation factor eEF1A1 to the structurally unrelated didemnin B, ternatin, nannocystin A and ansatrienin B. Journal of Computer-Aided Molecular Design, 31(10), 915–928. https://doi.org/10.1007/s10822-017-0066-x

Sapti, M. (2019). Etnobotani suku Togian di pulau Malenge Kecamatan Talatako, Kabupaten Tojo Una-Una, Sulawesi Tengah. Biocelebes, 53(9), 1689–1699.

Shahzad, N., Khan, W., MD, S., Ali, A., Saluja, S. S., Sharma, S., Al-Allaf, F. A., Abduljaleel, Z., Ibrahim, I. A. A., Abdel-Wahab, A. F., Afify, M. A., & Al-Ghamdi, S. S. (2017). Phytosterols as a natural anticancer agent: Current status and future perspective. Biomedicine and Pharmacotherapy, 88, 786–794. https://doi.org/10.1016/j.biopha.2017.01.068

Shen, Y., Du, L., Zeng, H., Zhang, X., Prinyawiwatkul, W., Alonso-Marenco, J. R., & Xu, Z. (2016). Butterfly pea (Clitoria ternatea) seed and petal extracts decreased HEp-2 carcinoma cell viability. International Journal of Food Science and Technology, 51(8), 1860–1868. https://doi.org/10.1111/ijfs.13158

Shyam kumar, B., & Bhat, K. I. (2011). In-vitro cytotoxic activity studies of Clitoria ternatea Linn flower extracts. International Journal of Pharmaceutical Sciences Review and Research, 6(2), 120–121.

Srichaikul, B. (2017). Ultrasonication extraction, bioactivity, antioxidant activity, total flavonoid, total phenolic and antioxidant of Clitoria ternatea Linn flower extract for anti-aging drinks. Pharmacognosy Magazine, 13 (Suppl(62), 322–327. https://doi.org/10.4103/pm.pm

Suh, D. H., Kim, M. K., Kim, H. S., Chung, H. H., & Song, Y. S. (2013). Cancer-specific therapeutic potential of resveratrol: Metabolic approach against hallmarks of cancer. Functional Foods in Health and Disease, 3(8), 332–343. https://doi.org/10.31989/ffhd.v3i8.44

Tantivejkul, K., Vucenik, I., Eiseman, J., & Shamsuddin, A. K. M. (2003). Inositol hexaphosphate (IP6) enhances the anti-proliferative effects of adriamycin and tamoxifen in breast cancer. Breast Cancer Research and Treatment, 79(3), 301–312. https://doi.org/10.1023/A:1024078415339

Vidana Gamage, G. C., Lim, Y. Y., & Choo, W. S. (2021). Anthocyanins from Clitoria ternatea flower: Biosynthesis, extraction, stability, antioxidant activity, and applications. Frontiers in Plant Science, 12(December), 1–17. https://doi.org/10.3389/fpls.2021.792303

Wang, X., Yang, Y., An, Y., & Fang, G. (2019). The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer. Biomedicine and Pharmacotherapy, 117(June), 109086. https://doi.org/10.1016/j.biopha.2019.109086

WHO. (2020). Cancer in Indonesia. Cancer Country Profile, 247(22). https://doi.org/10.1001/jama.247.22.308

Woyengo, T. A., Ramprasath, V. R., & Jones, P. J. H. (2009). Anticancer effects of phytosterols. European Journal of Clinical Nutrition, 63(7), 813–820. https://doi.org/10.1038/ejcn.2009.29

Yee, H. W., & Than, N. N. (2020). Study on qualitative and quantitative phytochemical constituents and some biological activities of Clitoria Ternatea L .( aung – mae – nyo ) flowers. Journal of the Myanmar Academy of Arts and Science, XVIII(1).

Zhang, S., Xiao, K. Z., Jin, J., Zhang, Y., & Zhou, W. (2013). Chemosensitizing activities of cyclotides from Clitoria ternatea in paclitaxel-resistant lung cancer cells. Oncology Letters, 5(2), 641–644. https://doi.org/10.3892/ol.2012.1042

Zhao, H., Zhang, X., Wang, M., Lin, Y., & Zhou, S. (2021). Stigmasterol simultaneously induces apoptosis and protective autophagy by inhibiting akt/mtor pathway in gastric cancer cells. Frontiers in Oncology, 11(February), 1–11. https://doi.org/10.3389/fonc.2021.629008

Zulkapli, R., Abdul Razak, F., & Zain, R. B. (2017). Vitamin e (α-Tocopherol) exhibits antitumour activity on oral squamous carcinoma cells ORL-48. Integrative Cancer Therapies, 16(3), 414–425. https://doi.org/10.1177/1534735416675950



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.