The rapid spread of the coronavirus disease 2019 (COVID-19) has led to the development of therapeutic inhibitor drug of SARS-CoV-2, which can inhibit the viral enzyme RNA-dependent-RNA-polymerase (RdRp), thereby preventing the replication, transcription, and synthesis of RNA virus in the host cells. Previous in-vitro studies revealed that Andrographis paniculata has the potential to inhibit the virus. Therefore, this study aims to isolate the specific compounds of Andrographis paniculata, which play a role in inhibiting SARS-CoV-2 RdRp using molecular docking. A total of 19 compounds were identified in previous literature studies, while remdesivir and favipiravir were used as the positive control. All compounds and proteins were applied to minimize and optimize energy. Furthermore, the docking method was carried out using Autodock 4.2.6 software with a specific grid box containing the active site of RdRp (ID: 6M71), and the Lamarckian Genetic Algorithm was used to determine the conformation. The best docking was screened on ADMET prediction and the binding energy was evaluated. There are 18 compounds of Andrographis paniculata including the top three, namely andrographolactone (∆G = -8.86 kcal/mol), andrographolide (∆G = -7.74 kcal/mol), and andrographidine-A (∆G = -7.68 kcal/mol), which showed the strongest binding affinity to the SARS-CoV-2 RdRp protein compared to other compounds and the positive control remdesivir (∆G = -5.73 kcal/mol) and favipiravir (∆G = -5.20 kcal/mol). Furthermore, active amino acids play a role in this interaction by forming strong hydrogen bonds, such as TYR 619, LYS 621, ASP 760, and ASP 623. Andrographolactone has the highest potential as SARS-CoV-2 RdRp inhibitor, hence, it can be used as a novel therapeutic candidate.


Abd El-Aziz, N. M., Eldin Awad, O. M., Shehata, M. G., & El-Sohaimy, S. A. (2021). Inhibition of the SARS-CoV-2 RNA-Dependent RNA polymerase by natural bioactive compounds: Molecular docking analysis. Egyptian Journal of Chemistry, 64(4), 1989–2001. https://doi.org/10.21608/EJCHEM.2021.45739.2947

Ahmad, J., Ikram, S., Ahmad, F., Rehman, I. U., & Mushtaq, M. (2020). SARS-CoV-2 RNA Dependent RNA polymerase (RdRp) – A drug repurposing study. Heliyon, 6(7), e04502. https://doi.org/10.1016/j.heliyon.2020.e04502

Borse, S., Joshi, M., Saggam, A., Bhat, V., Walia, S., Marathe, A., Sagar, S., Chavan-Gautam, P., Girme, A., Hingorani, L., & Tillu, G. (2021). Ayurveda botanicals in COVID-19 management: An in silico multi-target approach. In PLoS ONE (Vol. 16). https://doi.org/10.1371/journal.pone.0248479

Chan, J. F.-W., Kok, K.-H., Zhu, Z., Chu, H., To, K. K.-W., Yuan, S., & Yuen, K.-Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections, 9(1), 221–236. https://doi.org/10.1080/22221751.2020.1719902

Chan, K. W., Wong, V. T., & Tang, S. C. W. (2020). COVID-19 : An update on the epidemiological , clinical , preventive and therapeutic evidence and guidelines of integrative chinese – western medicine for the management of 2019 novel coronavirus disease. The American Journal of Chinese Medicine, 48(3), 737–762. https://doi.org/10.1142/S0192415X20500378

da Silva, F. M. A., da Silva, K. P. A., de Oliveira, L. P. M., Costa, E. V., Koolen, H. H. F., Pinheiro, M. L. B., de Souza, A. Q. L., & de Souza, A. D. L. (2020). Flavonoid glycosides and their putative human metabolites as potential inhibitors of the SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). Memorias Do Instituto Oswaldo Cruz, 115(9), 1–8. https://doi.org/10.1590/0074-02760200207

Dong, N., Yang, X., Ye, L., Chen, K., Chan, E. W. C., Yang, M., & Chen, S. (2020). Genomic and protein structure modelling analysis depicts the origin and infectivity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China. BioRxiv, 1–14. https://doi.org/10.1101/2020.01.20.913368

Du, Xing, Li, Y., Xia, Y. L., Ai, S. M., Liang, J., Sang, P., Ji, X. L., & Liu, S. Q. (2016). Insights into protein–ligand interactions: Mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2), 1–34. https://doi.org/10.3390/ijms17020144

Du, Xuqin, Shi, L., Cao, W., Zuo, B., & Zhou, A. (2021). Add-on effect of Chinese herbal medicine in the treatment of mild to moderate COVID-19: A systematic review and meta-analysis. Plos One, 16(8), e0256429. https://doi.org/10.1371/journal.pone.0256429

Eweas, A. F., Alhossary, A. A., & Abdel-moneim, A. S. (2021). Molecular docking reveals ivermectin and remdesivir as potential repurposed drugs against SARS-CoV-2. Frontiers in Microbiology, 11(January), 1–15. https://doi.org/10.3389/fmicb.2020.592908

Fikrika, H., Ambarsari, L., & Sumaryada, T. (2016). Molecular docking studies of catechin and its derivatives as anti-bacterial inhibitor for glucosamine-6-phosphate synthase. IOP Conference Series: Earth and Environmental Science, 31(1). https://doi.org/10.1088/1755-1315/31/1/012009

Firdayani, & Srijanto, B. (2012). Bioactive Constituents from Andrographis paniculata ness with hepatoprotective potentials through in silico method. Proceeding of International Conference on Drug Development of Natural Resources, 223–228.

Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., … Rao, Z. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 368(6492), 779–782. https://doi.org/10.1126/science.abb7498

Gorbalenya, A. E., Baker, S. C., Baric, R. S., de Groot, R. J., Drosten, C., Gulyaeva, A. A., Haagmans, B. L., Lauber, C., Leontovich, A. M., Neuman, B. W., Penzar, D., Perlman, S., Poon, L. L. M., Samborskiy, D., Sidorov, I. A., Sola, I., & Ziebuhr, J. (2020). Severe acute respiratory syndrome-related coronavirus: The species and its viruses – a statement of the Coronavirus Study Group. BioRxiv. https://doi.org/10.1101/2020.02.07.937862

Jang, W. D., Jeon, S., Kim, S., & Lee, S. Y. (2021). Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay. Proceedings of the National Academy of Sciences of the United States of America, 118(30), 1–9. https://doi.org/10.1073/pnas.2024302118

Jayakumar, T., Hsieh, C. Y., Lee, J. J., & Sheu, J. R. (2013). Experimental and clinical pharmacology of Andrographis paniculata and its major bioactive phytoconstituent andrographolide. Evidence-Based Complementary and Alternative Medicine, 2013 (Figure 1). https://doi.org/10.1155/2013/846740

Kwon, C. Y., Lee, B., Chung, S. Y., & Kim, J. W. (2019). Herbal medicine for post-stroke anxiety: A systematic review and meta-analysis of randomized controlled trials. Complementary Therapies in Clinical Practice, 35(March 2020), 237–252. https://doi.org/10.1016/j.ctcp.2019.02.015

Lim, X. Y., Sue, J., Chan, W., Yew, T., Tan, C., Teh, B. P., Ridzuan, M., Abd, M., Mohamad, S., Fazlin, A., & Mohamed, S. (2021). Andrographis paniculata ( Burm . F.) Wall . andrographolide analogues as SARS- ­ antivirals ? A rapid review. Natural Product Communications, 16(5), 1–15. https://doi.org/10.1177/1934578X211016610

Lipsitch, M., Swerdlow, D. L., & Lyn Finelli. (2020). Defining the epidemiology of COVID-19 - Studies needed. The New England Journal of Medicine, 328, 1194–1196. https://doi.org/10.1056/NEJMp2002125

Loza-Mejía, M. A., & Salazar, J. R. (2020). In silico exploration through molecular docking and molecular dynamics of some cinnamoyl substituted compounds on targets related to SARS-CoV-2. Revista Del Centro de Investigación de La Universidad La Salle, 14(53), 67–88.

Lung, J., Lin, Y. S., Yang, Y. H., Chou, Y. L., Shu, L. H., Cheng, Y. C., Liu, H. Te, & Wu, C. Y. (2020). The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. Journal of Medical Virology, 92(6), 693–697. https://doi.org/10.1002/jmv.25761

Morse, J. S., Lalonde, T., Xu, S., & Liu, W. R. (2020). Learning from the past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. ChemBioChem, 21(5), 730–738. https://doi.org/10.1002/cbic.202000047

Murugan, N. A., Pandian, C. J., & Jeyakanthan, J. (2021). Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials. Journal of Biomolecular Structure and Dynamics, 39(12), 4415–4426. https://doi.org/10.1080/07391102.2020.1777901

Nie, X., Chen, S. R., Wang, K., Peng, Y., Wang, Y. T., Wang, D., Wang, Y., & Zhou, G. C. (2017). Attenuation of innate immunity by andrographolide derivatives through NF-κB signaling pathway. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-04673-x

Nimgampalle, M., Devanathan, V., & Saxena, A. (2021). Screening of chloroquine, hydroxychloroquine and its derivatives for their binding affinity to multiple SARS-CoV-2 protein drug targets. Journal of Biomolecular Structure and Dynamics, 39(14), 4949–4961. https://doi.org/10.1080/07391102.2020.1782265

Nusantoro, Y. R., & Fadlan, A. (2021). The effect of energy minimization on the molecular docking of acetone-based oxindole. Jurnal Kimia dan Pendidikan Kimia, 6(1), 69–77. https://doi.org/10.20961/jkpk.v6i1.45467

Parvez, M. S. A., Karim, M. A., Hasan, M., Jaman, J., Karim, Z., Tahsin, T., Hasan, M. N., & Hosen, M. J. (2020). Prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 using comprehensive drug repurposing and molecular docking approach. International Journal of Biological Macromolecules, 163, 1787–1797. https://doi.org/10.1016/j.ijbiomac.2020.09.098

Patin, E. W., Zaini, M. A., & Sulastri, Y. (2018). Pengaruh variasi suhu pengeringan terhadap sifat fisiko kimia teh daun sambiloto (Andrographis paniculata). Pro Food (Jurnal Ilmu dan Teknologi Pangan), 4(1), 251–258. https://doi.org/10.29303/profood.v4i1.72

Pintilie, L., Tanase, C., & Mohapatra, R. K. (2020). Molecular docking studies on synthetic therapeutic agents for COVID-19. Chemistry Proceedings, 3(1), 46. https://doi.org/10.3390/ecsoc-24-08352

Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

Pirzada, R. H., Haseeb, M., Batool, M., Kim, M. S., & Choi, S. (2021). Remdesivir and ledipasvir among the fda-approved antiviral drugs have potential to inhibit SARS-CoV-2 replication. Cells, 10(5). https://doi.org/10.3390/cells10051052

Rafi, M., Karomah, A. H., Heryanto, R., Septaningsih, D. A., Kusuma, W. A., Amran, M. B., Rohman, A., & Prajogo, B. (2020). Metabolite profiling of Andrographis paniculata leaves and stem extract using UHPLC-Orbitrap-MS/MS. Natural Product Research, 0(0), 1–5. https://doi.org/10.1080/14786419.2020.1789637

Ratnani, R. D., Hartati, I., & Kurniasari, L. (2012). Potensi produksi andrographolide dari sambiloto (Andrographis paniculata Nees) melalui proses ekstraksi hidrotropi. Momentum, 8(1), 6–10. https://doi.org/10.36499/jim.v8i1.279

Sa-Ngiamsuntorn, K., Suksatu, A., Pewkliang, Y., Thongsri, P., Kanjanasirirat, P., Manopwisedjaroen, S., Charoensutthivarakul, S., Wongtrakoongate, P., Pitiporn, S., Chaopreecha, J., Kongsomros, S., Jearawuttanakul, K., Wannalo, W., Khemawoot, P., Chutipongtanate, S., Borwornpinyo, S., Thitithanyanont, A., & Hongeng, S. (2021). Anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. Journal of Natural Products, 84(4), 1261–1270. https://doi.org/10.1021/acs.jnatprod.0c01324

Sharbidre, A., Dhage, P., Duggal, H., & Meshram, R. (2021). In silico investigation of tridax procumbens phytoconstituents against SARS-CoV-2 infection. Biointerface Research in Applied Chemistry, 11(4), 12120–12148. https://doi.org/10.33263/BRIAC114.1212012148

Sharma, A., Vora, J., Patel, D., Sinha, S., Jha, P. C., & Shrivastava, N. (2020). Identification of natural inhibitors against prime targets of SARS-CoV-2 using molecular docking, molecular dynamics simulation and MM-PBSA approaches. Journal of Biomolecular Structure and Dynamics, 0(0), 1–16. https://doi.org/10.1080/07391102.2020.1846624

Srikanth, L., Venkata, P., & Krishna, G. (2021). Andrographolide binds to spike glycoprotein and RNA-dependent RNA polymerase ( NSP12 ) of SARS-CoV-2 by in silico approach : a probable molecule in the development of anti-coronaviral drug. Journal of Genetic Engineering and Biotechnology, 19(101), 1–7. https://doi.org/10.1186/s43141-021-00201-7

Swaminathan, K., Karunakaran, K. N., Manoharan, J. P., & Vidyalakshmi, S. (2021). SARS-CoV-2 multiple target inhibitors from Andrographis paniculata: An in-silico report. European Journal of Molecular and Clinical Medicine, 8(3), 1653–1685. https://www.embase.com/search/s?subaction=viewrecord&id=L2011572564&from=export

Wabalo, E. K., Dubiwak, A. D., Senbetu, M. W., & Gizaw, T. S. (2021). Effect of genomic and amino acid sequence mutation on virulence and therapeutic target of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Infection and Drug Resistance, 14, 2187–2192. https://doi.org/10.2147/IDR.S307374

Wanaratna, K., Leethong, P., Inchai, N., Chueawiang, W., Tabmee, A., Sirinavin, S., Medicine, A., Hospital, S., Wanaratna, K., & Medicine, A. (2021). Efficacy and safety of Andrographis paniculata extract in patients with mild COVID-19: A randomized controlled trial. Medrxiv, 7(8), 21259912. https://doi.org/10.1101/2021.07.08.21259912

Wang, G. C., Wang, Y., Williams, I. D., Sung, H. H. Y., Zhang, X. Q., Zhang, D. M., Jiang, R. W., Yao, X. S., & Ye, W. C. (2009). Andrographolactone, a unique diterpene from Andrographis paniculata. Tetrahedron Letters, 50(34), 4824–4826. https://doi.org/10.1016/j.tetlet.2009.05.097

Wang, Z., & Yang, L. (2021). Chinese herbal medicine: Fighting SARS-CoV-2 infection on all fronts. Journal of Ethnopharmacology, 270(113869), 1–18. https://doi.org/10.1016/j.jep.2021.113869

Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, N.Y.), 367(6483), 1260–1263. https://doi.org/https://doi.org/10.1126/science.abb2507

Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008

Yang, Y., Lu, Q.-B., Liu, M.-J., Wang, Y.-X., Zhang, A.-R., Jalali, N., Dean, N. E., Longini, I., Halloran, M. E., Xu, B., Zhang, X.-A., Wang, L.-P., Liu, W., & Fang, L.-Q. (2020). Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. Medrxiv. https://doi.org/https://doi.org/10.1101/2020.02.10.20021675

Yasin, S. A., Azzahra, A., Ramadhan, N. E., & Mylanda, V. (2020). Studi penambatan molekuler dan prediksi admet senyawa bioaktif beberapa jamu Indonesia terhadap SARS-CoV-2 main protease (Mpro). Berkala Ilmiah Mahasiswa Farmasi Indonesia (BIMFI), 7(2), 24–41. https://doi.org/10.48177/bimfi.v7i2.45

Yu, R., Chen, L., Lan, R., Shen, R., & Li, P. (2020). Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. International Journal of Antimicrobial Agents, 56(January). https://doi.org/https://doi.org/10.1016/j.ijantimicag.2020.106012



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.