•  
  •  
 

Abstract

The emerging multi-drug-resistant pathogens urge continuous searches for new antimicrobial agents. This study investigated the in vitro antibacterial and antifungal activities of the stem barks of two plants, Sorindeia madagascariensis and Albizia harveyi. Broth microdilution assay was used to determine the minimum inhibitory concentrations (MICs) of hydroethanolic extracts of the stem barks against selected bacteria and fungi. Both plant extracts exhibited activity against all tested microorganisms and their minimum inhibitory concentrations (MICs) against bacteria and fungi were from 1.67 to 5.00 mg/mL and from 1.67 to 10.00 mg/mL, respectively. This study reports the antibacterial and antifungal activities of the hydroethanolic extracts of the stem barks of both plants. Antifungal activity of A. harveyi is being reported for the first time. We therefore suggest further investigation of bioactive compounds from stem barks of A. harveyi and S. madagascariensis with antibacterial and antifungal activities.

References

Arabski, M., Wȩgierek-Ciuk, A., Czerwonka, G., Lankoff, A., & Kaca, W. (2012). Effects of saponins against clinical E. coli strains and eukaryotic cell line. Journal of Biomedicine and Biotechnology, 2012. https://doi.org/10.1155/2012/286216

Bahri-Sahloul, R., ben Fredj, R., Boughalleb, N., Shriaa, J., Saguem, S., Hilbert, J. L., Trotin, F., Ammar, S., Bouzid, S., & Harzallah-Skhiri, F. (2014). Phenolic composition and antioxidant and antimicrobial activities of extracts obtained from Crataegus azarolus L. var. aronia (Willd.) Batt. ovaries calli. Journal of Botany, 2014. https://doi.org/10.1155/2014/623651

Berger, S., el Chazli, Y., Babu, A. F., & Coste, A. T. (2017). Azole resistance in Aspergillus fumigatus: A consequence of antifungal use in agriculture?. Frontiers in Microbiology, 8(Jun), 1–6. https://doi.org/https://doi.org/10.3389/fmicb.2017.01024

Brown, G. D., Denning, D. W., Gow, N. A. R., Levitz, S. M., Netea, M. G., & White, T. C. (2012). Hidden killers: Human fungal infections. Science Translational Medicine, 4(165), 1–9. https://doi.org/10.1126/scitranslmed.3004404

CDC. (2019). Antibiotic resistance threats in the United States. Department of Health and Human Services, CDC. https://doi.org/https://doi.org/10.15620/cdc:82532

European Committee for Antimicrobial Susceptibility Testing. (2003). Determination of minimum inhibitory concentrations ( MICs ) of antibacterial agents by broth dilution. Clinical Microbiology and Infection, 9(8), 2–4.

Feyera Fufa, M., Deressa, F., Deyou, T., & Abdisa, N. (2018). Isolation and characterization of compounds from the leaves of Melia azedarach and stem bark of Albizia schimperiana and evaluation for antimicrobial activities. Medicinal Chemistry, 08(06), 154–165. https://doi.org/10.4172/2161-0444.1000507

Ghaly, N. S., Melek, F. R., & Abdelwahed, N. A. M. (2010). Flavonoids from Albizia chinensis of Egypt. Revista Latinoamericana de Química, 38(3), 153–158.

Katiyar, C., Kanjilal, S., Gupta, A., & Katiyar, S. (2012). Drug discovery from plant sources: An integrated approach. AYU, 33(1), 10. https://doi.org/10.4103/0974-8520.100295

Lwashina, T. (2000). The Structure and Distribution of the Flavonoids in Plants. Journal of Plant Research, 113, 287–299. https://doi.org/https://doi.org/10.1007/PL00013940

Makgatho, M. E., Nxumalo, W., & Raphoko, L. A. (2018). Anti-mycobacterial, -oxidative, -proliferative and -inflammatory activities of dichloromethane leaf extracts of Gymnosporia senegalensis (Lam.) Loes. South African Journal of Botany, 114, 217–222. https://doi.org/10.1016/j.sajb.2017.11.002

Makoye, P. M., John, I. D., Mbunde, M. N., Masota, N. E., Sempombe, J., & Mugoyela, V. (2020). Phytochemical screening, antibacterial activity and bioautography of Sorindeia madagascariensis, Mucuna stans, and Albizia harveyi. Journal of Diseases and Medicinal Plants, 6(3), 65–71. https://doi.org/10.11648/j.jdmp.20200603.12

Maroyi, A. (2018). Albizia adianthifolia: Botany, medicinal uses, phytochemistry, and pharmacological properties. Scientific World Journal, 2018, 1–18. https://doi.org/10.1155/2018/7463584

Mbunde, M. V. N., Mabiki, F., & Innocent, E. (2019). Antifungal activity of single and combined extracts of medicinal plants from Southern Highlands of Tanzania. Journal of Pharmacognosy and Phytochemistry, 8(1), 181–187.

Monteiro, C. de A., & Alves dos Santos, J. R. (2019). Phytochemicals and their antifungal potential against pathogenic yeasts. In Phytochemicals in Human Health. IntechOpen. https://doi.org/10.5772/INTECHOPEN.87302

Omara, T., Kiprop, A. K., & Kosgei, V. J. (2021). Intraspecific variation of phytochemicals, antioxidant, and antibacterial activities of different solvent extracts of Albizia coriaria Leaves from some agroecological zones of Uganda. Evidence-Based Complementary and Alternative Medicine, 2021. https://doi.org/10.1155/2021/2335454

Perlroth, J., Choi, B., & Spellberg, B. (2007). Nosocomial fungal infections : Epidemiology, diagnosis, and treatment. Medical Mycology, 45(4), 321–346. https://doi.org/10.1080/13693780701218689

Petrovska, B. (2012). Historical review of medicinal plants′ usage. Pharmacognosy Reviews, 6(11), 1–5. https://doi.org/10.4103/0973-7847.95849

Pfaller, M. A., Pappas, P. G., & Wingard, J. R. (2006). Invasive fungal pathogens : Current epidemiological trends. Clinical Infectious Diseases, 43(Suppl 1), 3–14. https://doi.org/https://doi.org/10.1086/504490

Rao, U. S. M., Abdurrazak, M., & Mohd, K. S. (2016). Phytochemical screening, total flavonoid and phenolic content assays of various solvent extracts of tepal of Musa paradisiaca. Malaysian Journal of Analytical Sciences, 20(5), 1181–1190. https://doi.org/http://dx.doi.org/10.17576/mjas-2016-2005-25

Rates, S. M. K. (2001). Plants as source of drugs. Toxicon, 39(5), 603–613. https://doi.org/10.1016/S0041-0101(00)00154-9

Richardson, M. D. (2005). Changing patterns and trends in systemic fungal infections. Journal of Antimicrobial Chemotherapy (2005), 56(Suppl 1), 5–11. https://doi.org/10.1093/jac/dki218

Samoylenko, V., Jacob, M. R., Khan, S. I., Zhao, J., Tekwani, B. L., Midiwo, J. O., Walker, L. A., & Muhammada, I. (2009). Antimicrobial, antiparasitic and cytotoxic spermine alkaloids from Albizia schimperiana. Natural Product Communications, 4(6), 791–796. https://doi.org/10.1177/1934578x0900400611

Shah, B. N., & Seth, A. K. (2013). Textbook of Pharmacognosy and Phytochemistry (1st ed.). Elsevier.

Thippeswamy, S., Mohana, D. C., Abhishek, R. U., & Manjunath, K. (2014). Inhibitory effect of alkaloids of Albizia amara and Albizia saman on growth and fumonisin B1 production by Fusarium verticillioides. International Food Research Journal, 21(3), 947–952.

Thippeswamy, S., Mohana, D. C., Abhishek, R. U., & Manjunath, K. (2015). Evaluation of antimicrobial and antioxidant properties of pithecolobine isolated from Albizia saman. Journal of Herbs, Spices & Medicinal Plants, 21(4), 438–446. https://doi.org/10.1080/10496475.2014.996695

Trdá, L., Janda, M., Macková, D., Pospíchalová, R., Dobrev, P. I., Burketová, L., & Matušinsky, P. (2019). Dual mode of the saponin aescin in plant protection: Antifungal agent and plant defense elicitor. Frontiers in Plant Science, 10(November), 1–14. https://doi.org/10.3389/fpls.2019.01448

WHO. (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 5–7.

Yang, C. R., Zhang, Y., Jacob, M. R., Khan, S. I., Zhang, Y. J., & Li, X. C. (2006). Antifungal activity of C-27 steroidal saponins. Antimicrobial Agents and Chemotherapy, 50(5), 1710–1714. https://doi.org/10.1128/AAC.50.5.1710-1714.2006

Yang, L., Liu, X., Zhuang, X., Feng, X., Zhong, L., & Ma, T. (2018). Antifungal effects of saponin extract from rhizomes of Dioscorea panthaica Prain et Burk against Candida albicans. Evidence-Based Complementary and Alternative Medicine, 2018. https://doi.org/10.1155/2018/6095307

Zacchino, S. A., Butassi, E., Liberto, M. di, Raimondi, M., Postigo, A., & Sortino, M. (2017). Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine, 37(October), 27–48. https://doi.org/10.1016/j.phymed.2017.10.018

Zhu, C., Lei, M., Andargie, M., Zeng, J., & Li, J. (2019). Antifungal activity and mechanism of action of tannic acid against Penicillium digitatum. Physiological and Molecular Plant Pathology, 107(April), 46–50. https://doi.org/10.1016/j.pmpp.2019.04.009

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.