The role of in silico studies in the discovery of new drugs is very important and interesting in the recent years, where the results can be used as confirmation of the results of in vitro tests carried out experimentally in the laboratory. One of the herbal ingredients is Ziziphus spina-christi leaves with effective antibacterial activity, such as for acne-causing bacteria, namely Propionibacterium acnes. This is because it contains main secondary metabolites with saponins as the major components which contain christinin as its active compound. There are four known types of christinin, namely christinin-A, christinin-B, christinin-C, and christinin-D. In this study, the molecular interaction of the christinin compound was tested to predict its affinity for Propionibacterium acnes compared to clindamycin, as well as to determine the level of safety on the skin so that it can be applied as a topical anti-acne dosage form. In silico studies, including molecular docking and toxicity prediction, were used to assess the activity of four molecules of the christinin compound on c-Jun N-terminal kinase (JNK) macromolecules. The christinin molecules form a strong and stable molecular interaction with the active site of the binding of c-Jun N-terminal kinase (JNK) macromolecules. Interestingly, the christinin compound molecules also has a fairly good level of safety based on the three identified parameters. Based on this results christinin compound molecules has potential to be developed as c-Jun N-terminal kinase (JNK) inhibitors candidate to control of skin infections caused by Propionibacterium acnes which has potential as a topical anti-acne.


Abdel-Zaher, A. O., Salim, S. Y., Assaf, M. H., & Abdel-Hady, R. H. (2005). Antidiabetic activity and toxicity of Zizyphus spina-christi leaves. Journal of Ethnopharmacology, 101(1–3), 129–138. https://doi.org/10.1016/j.jep.2005.04.007

Al-Khafaji, K., & Taskin Tok, T. (2020). Molecular dynamics simulation, free energy landscape and binding free energy computations in exploration the anti-invasive activity of amygdalin against metastasis. Computer Methods and Programs in Biomedicine, 195(2020), 105660. https://doi.org/10.1016/j.cmpb.2020.105660

Alogheli, H., Olanders, G., Schaal, W., Brandt, P., & Karlén, A. (2017). Docking of Macrocycles: Comparing Rigid and Flexible Docking in Glide. Journal of Chemical Information and Modeling, 57(2), 190–202 https://doi.org/10.1021/acs.jcim.6b00443

Alzahrani, A. M., Alzahrani, A. A., & Alsharm, A. A. (2019). The Use of Ziziphus spina-christi Extract in Treating Erlotinib (Tarceva®) Associated Rash: A Case Report. Case Reports in Oncology, 12(3), 909–912. https://doi.org/10.1159/000504696

Asgarpanah, J. (2012). Phytochemistry and pharmacologic properties of Ziziphus spina christi (L.) Willd. African Journal of Pharmacy and Pharmacology, 6(31), 2332–2339. https://doi.org/10.5897/ajpp12.509

Audagnotto, M., & Dal Peraro, M. (2017). Protein post-translational modifications: In silico prediction tools and molecular modeling. In Computational and Structural Biotechnology Journal, 15(2017), 307–319. https://doi.org/10.1016/j.csbj.2017.03.004

Baek, S., Kang, N. J., Popowicz, G. M., Arciniega, M., Jung, S. K., Byun, S., Song, N. R., Heo, Y. S., Kim, B. Y., Lee, H. J., Holak, T. A., Augustin, M., Bode, A. M., Huber, R., Dong, Z., & Lee, K. W. (2013). Structural and functional analysis of the natural JNK1 inhibitor quercetagetin. Journal of Molecular Biology, 425(2), 411–423. https://doi.org/10.1016/j.jmb.2012.10.019

Cheon, D., Kim, J., Jeon, D., Shin, H. C., & Kim, Y. (2019). Target proteins of phloretin for its anti-inflammatory and antibacterial activities against propionibacterium acnes-induced skin infection. Molecules, 24(7), 1319. https://doi.org/10.3390/molecules24071319

Dar, A. M., & Mir, S. (2017). Molecular Docking: Approaches, Types, Applications and Basic Challenges. Journal of Analytical & Bioanalytical Techniques, 7(2), 146–157. https://doi.org/10.4172/2155-9872.1000356

Elokely, K. M., & Doerksen, R. J. (2013). Docking challenge: Protein sampling and molecular docking performance. Journal of Chemical Information and Modeling, 53(8), 1934–1945. https://doi.org/10.1021/ci400040d

Fakih, T. M. (2020). Dermaseptin-Based Antiviral Peptides to Prevent COVID-19 through In Silico Molecular Docking Studies against SARS-CoV-2 Spike Protein. Pharmaceutical Sciences and Research, , 7(Special Issue on COVID-19), 65–70. https://doi.org/10.7454/psr.v7i4.1079

Fakih, T. M., & Dewi, M. L. (2020). In silico Identification of Characteristics Spike Glycoprotein of SARS-CoV-2 in the Development Novel Candidates for COVID-19 Infectious Diseases. Journal of Biomedicine and Translational Research, 6(2), 48–52. https://doi.org/10.14710/jbtr.v6i2.7590

Fakih, T. M., Dewi, M. L., & Syahroni, E. (2020). Magainin as an Antiviral Peptide of SARS-CoV-2 Main Protease for Potential Inhibitor: An In Silico Approach. Biogenesis: Jurnal Ilmiah Biologi, 8(1), 104–110. https://doi.org/10.24252/bio.v8i1.13871

Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. In Molecules, 20(7), 13384–13421. https://doi.org/10.3390/molecules200713384

Gaillard, T. (2018). Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark. Journal of Chemical Information and Modeling, 58(8), 1697–1706. https://doi.org/10.1021/acs.jcim.8b00312

Granchi, C., Capecchi, A., Del Frate, G., Martinelli, A., Macchia, M., Minutolo, F., & Tuccinardi, T. (2015). Development and validation of a docking-based virtual screening platform for the identification of new lactate dehydrogenase inhibitors. Molecules, 20(5), 8772–8790. https://doi.org/10.3390/molecules20058772

Haeria., Hermawati., & Pine, A. T. U. D. (2016). Penentuan Kadar Flavonoid Total dan Aktivitas Antioksidan Ekstrak Etanol Daun Bidara (Ziziphus spina-christi L.). Journal of Pharmaceutical and Medicinal Sciences, 1(2).

Hirota, M., Ashikaga, T., & Kouzuki, H. (2018). Development of an artificial neural network model for risk assessment of skin sensitization using human cell line activation test, direct peptide reactivity assay, KeratinoSensTM and in silico structure alert parameter. Journal of Applied Toxicology, 38(4), 514–552. https://doi.org/10.1002/jat.3558

Hovaneţ, M. V., Ancuceanu, R. V., Dinu, M., Oprea, E., Budura, E. A., Negreş, S., Velescu, B. Ş., Duţu, L. E., Anghel, I. A., Ancu, I., Moroşan, E., & Şeremet, O. C. (2016). Toxicity and anti-inflammatory activity of Ziziphus jujuba Mill. leaves. Farmacia, 64(5), 802–808.

Hussein Mahran, G. E. D., Glombitza, K. W., Mirhom, Y. W., Hartmann, R., & Michel, C. G. (1996). Novel saponins from Zizyphus spina-christi growing in Egypt. Planta Medica, 62(2), 163–165. https://doi.org/10.1055/s-2006-957842

Khaerunnisa, S., Kurniawan, H., Awaluddin, R., & Suhartati, S. (2020). Potential Inhibitor of COVID-19 Main Protease (Mpro) from Several Medicinal Plant Compounds by Molecular Docking Study. Preprints, 2020, 2020030226. https://doi.org/10.20944/preprints202003.0226.v1.

Muttaqin, F. Z., Fakih, T. M., & Muhammad, H. N. (2017). Molecular docking, molecular dynamics, and in silico toxicity prediction studies of coumarin, N-Oxalylglycine, organoselenium, organosulfur, and pyridine derivatives as histone lysine demethylase inhibitors. Asian Journal of Pharmaceutical and Clinical Research, 10(12), 212–215. https://doi.org/10.22159/ajpcr.2017.v10i12.19348

Ng, Y. C., Colombo, N., & Silva, R. (2018). Bayesian semi-supervised learning with graph Gaussian processes. Advances in Neural Information Processing Systems, 31(2018).

Niamat, R., Khan, M. A., Khan, K. Y., Ahmed, M., Mazari, P., Ali, B., Mustafa, M., & Zafar, M. (2012). A review on zizyphus as antidiabetic. In Journal of Applied Pharmaceutical Science, 2(3), 177–179.

Ozerov, I. V., Lezhnina, K. V., Izumchenko, E., Artemov, A. V., Medintsev, S., Vanhaelen, Q., Aliper, A., Vijg, J., Osipov, A. N., Labat, I., West, M. D., Buzdin, A., Cantor, C. R., Nikolsky, Y., Borisov, N., Irincheeva, I., Khokhlovich, E., Sidransky, D., Camargo, M. L., & Zhavoronkov, A. (2016). In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development. Nature Communications, 7, 13427. https://doi.org/10.1038/ncomms13427

Petrov, D., & Zagrovic, B. (2014). Are Current Atomistic Force Fields Accurate Enough to Study Proteins in Crowded Environments? PLoS Computational Biology, 10(5), e1003638. https://doi.org/10.1371/journal.pcbi.1003638

Ren, J., Yuan, X., Li, J., Lin, S., Yang, B., Chen, C., Zhao, J., Zheng, W., Liao, H., Yang, Z., & Qu, Z. (2020). Assessing the performance of the g_mmpbsa tools to simulate the inhibition of oseltamivir to influenza virus neuraminidase by molecular mechanics Poisson–Boltzmann surface area methods. Journal of the Chinese Chemical Society, 67(1), 46–53. https://doi.org/10.1002/jccs.201900148

Schultz, T. W., Amcoff, P., Berggren, E., Gautier, F., Klaric, M., Knight, D. J., Mahony, C., Schwarz, M., White, A., & Cronin, M. T. D. (2015). A strategy for structuring and reporting a read-across prediction of toxicity. Regulatory Toxicology and Pharmacology, 72(3), 586–601. https://doi.org/10.1016/j.yrtph.2015.05.016 Shakiba, R., Nilforoushzadeh, M. A., Hashem-Dabaghian, F., Minaii Zangii, B., Ghobadi, A., Shirbeigi, L., Aliasl, J., Shakiba, M., & Ghods, R. (2019). Effect of Cedar (Ziziphus spina-christi) topical solution in mild to moderate acne vulgaris: a randomized clinical study. Journal of Dermatological Treatment, 32(2), 197–202. https://doi.org/10.1080/09546634.2019.1692125

Smith, M. D., Rao, J. S., Segelken, E., & Cruz, L. (2015). Force-Field Induced Bias in the Structure of Aβ21-30: A Comparison of OPLS, AMBER, CHARMM, and GROMOS Force Fields. Journal of Chemical Information and Modeling, 55(12), 2587–2595. https://doi.org/10.1021/acs.jcim.5b00308

Sousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5(1), 367. https://doi.org/10.1186/1756-0500-5-367

Yamagishi, J., Okimoto, N., Morimoto, G., & Taiji, M. (2014). A new set of atomic radii for accurate estimation of solvation free energy by Poisson-Boltzmann solvent model. Journal of Computational Chemistry, 35(29), 2132–2139. https://doi.org/10.1002/jcc.23728

Zaenglein, A. L., Pathy, A. L., Schlosser, B. J., Alikhan, A., Baldwin, H. E., Berson, D. S., Bowe, W. P., Graber, E. M., Harper, J. C., Kang, S., Keri, J. E., Leyden, J. J., Reynolds, R. V., Silverberg, N. B., Stein Gold, L. F., Tollefson, M. M., Weiss, J. S., Dolan, N. C., Sagan, A. A., Stern, M., Boyer, K. M., & Bhushan, R. (2016). Guidelines of care for the management of acne vulgaris. Journal of the American Academy of Dermatology, 74(5), 945–973. https://doi.org/10.1016/j.jaad.2015.12.037

Zhu, H., Bouhifd, M., Donley, E., Egnash, L., Kleinstreuer, N., Kroese, E. D., Liu, Z., Luechtefeld, T., Palmer, J., Pamies, D., Shen, J., Strauss, V., Wu, S., & Hartung, T. (2016). Supporting read-across using biological data. Altex, 33(2), 167–182. https://doi.org/10.14573/altex.1601252



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.