•  
  •  
 

Abstract

Coronavirus disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and can be aggravated by comorbid diseases. In administering COVID-19 therapy, we need to consider potential drug-drug interactions (pDDIs) with comorbid drugs. Most patients with comorbid diseases get polypharmacy, therefore the risk of pDDIs increases. Potential drug-drug interactions can cause unwanted effects such as toxicity to death. There is no on-label therapy for COVID-19 but FDA has Emergency Use Authorization (EUA) for hydroxychloroquine, chloroquine, azithromycin, remdesivir, ritonavir, and lopinavir. Some COVID-19 treatment potential drug-drug interactions have a level of severity C and D, so there is a high need for close monitoring during drug administration or modification therapy.

References

Ahmad, D. F., Castello, N. A., Bielsa, M. S., Shoenenberger, A.J.A. (2012). Exacerbation of systemic autoimmune disease as a results of the onset of a tuberculosis treatment. Atencion Farmaceutica, 14(1): 56-8.

Baeza, M. T., Merino, E., Boix, V., & Climent, E. (2007). Nifedipine-lopinavir/ritonavir severe interaction: a case report. AIDS (London, England), 21(1), 119–120. https:// doi.org/10.1097/QAD.0b013e3280117f6f.

Baxter, K., & Stockley. (2010). Stockley’s Drug Interactions. London: Pharmaceutical Press.

Bizjak, E. D., & Mauro, V. F. (1997). Digoxin- macrolide drug interaction. The Annals of Pharmacotherapy, 31(9), 1077–1079. https://doi. org/10.1177/106002809703100918

Centers for Disease Control and Prevention. (2020, Mei 13). Corona Virus Disease 2019. Accessed Mei 21, 2020, from cdc.gov: https://www.cdc.gov/coronavirus/2019- ncov/symptoms-testing/symptoms.html.

Centers for Disease Control and Prevention. (2019, Juni 24). Interaction between travel vaccines and drugs. Accessed Mei 28, 2020, from cdc.gov: https:// wwwnc.cdc.gov/travel/yellowbook/2020/preparing- international-travelers/interactions-between-travel- vaccines-and-drugs.

Ding, R., Tayrouz, Y., Riedel, K. D., Burhenne, J., Weiss, J., Mikus, G., & Haefeli, W. E. (2004). Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clinical Pharmacology and Therapeutics, 76(1), 73–84. https:// doi.org/10.1016/j.clpt.2004.02.008.

Ette, E. I., Brown-Awala, E. A., & Essien, E. E. (1987). Effect of ranitidine on chloroquine disposition. Drug Intelligence & Clinical Pharmacy, 21(9), 732–734. https://doi.org/10.1177/106002808702100913.

Food and Drug Administration. (2020, March 28). FDA. Accessed May 21, 2020, from FDA, Frequently Asked Question: https://www.fda.gov/media/136784/download

Kiser, J. J., Gerber, J. G., Predhomme, J. A., Wolfe, P., Flynn, D. M., & Hoody, D. W. (2008). Drug/Drug interaction between lopinavir/ritonavir and rosuvastatin in healthy volunteers. Journal of Acquired Immune Deficiency Syndromes (1999), 47(5), 570–578. https:// doi.org/10.1097/QAI.0b013e318160a542.

Khunti, S., Khunti, N., Seidu, S., & Khunti, K. (2020). Therapeutic uncertainties in people with cardiometabolic diseases and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or COVID-19). Diabetes, obesity & metabolism, 10.1111/dom.14062. Advance online publication. https://doi.org/10.1111/dom.14062.

Lacy, C. F., Armstrong, L. L., Goldman, M. P., & Lance, L. L. (2007). Drug Information Handbook (Vol. 20). Hudson, Ohio: Lexi-comp.

Food and Drug Administration. (2020, Mei 1). Press Announcement. Accessed Mei 21, 2020, from FDA: https://www.fda.gov/news-events/pressannouncements/coronavirus-covid-19-update-fda- issues-emergency-use-authorization-potential-covid-19- treatment.

Gomes,T.,Mamdani,M.M.,&Juurlink,D.N.(2009). Macrolide-induced digoxin toxicity: a population-based study. Clinical Pharmacology and Therapeutics, 86(4), 383–386. https://doi.org/10.1038/clpt.2009.127.

Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., Liu, L., Shan, H., Lei, C. L., Hui, D., Du, B., Li, L. J., Zeng, G., Yuen, K. Y., Chen, R. C., Tang, C. L., Wang, T., Chen, P. Y., Xiang, J., Li, S. Y., ... China Medical Treatment Expert Group for Covid-19 (2020). Clinical characteristics of coronavirus disease 2019 in China. The New England Journal of Medicine, 382(18), 1708–1720. https://doi.org/10.1056/NEJMoa2002032.

Harvey C.J., Bateman, N.T., Llyod M.E., Highes, G.R.V., (1995). Influence of rifampicin on hydroxychloroquine. Clinical and Experimental Rheumatology, 13, 536.

Hughes, C. A., Freitas, A., & Miedzinski, L. J. (2007). Interaction between lopinavir/ritonavir and warfarin. CMAJ: Canadian Medical Association journal =Journal de l’Association Medicale Canadienne, 177(4), 357– 359. https://doi.org/10.1503/cmaj.061284.

John Hopkins University. (2020, June 24). World Map. Accessed June 24, 2020, from coronavirus.jhu.edu: https://coronavirus.jhu.edu/map.html

The Indonesian Society of Respirology. (2020, April 8). PDPI. Accessed May 21, 2020, from PDPI: https:// perdhaki.org/2020/04/08/tatalaksana-pasien-covid-19- oleh-perhimpunan-dokter-paru-indonesia/

Robinson, M., Gaedigk, A., & Kashuba, A. D. (2004). Coadministration of lopinavir/ritonavir and phenytoin results in two-way drug interaction through cytochrome P-450 induction. Journal of acquired immune deficiency syndromes (1999), 36(5), 1034–1040. https://doi. org/10.1097/00126334-200408150-00006.

Ministry of Health, Republic of Indonesia. (2020). COVID-19. Accessed May 21, 2020, from Situs web KemenKes RI: https://covid19.kemkes.go.id/

Mori, T., Aisa, Y., Nakazato, T., Yamazaki, R., Ikeda, Y. and Okamoto, S. (2005), Tacrolimus–azithromycin interaction in a recipient of allogeneic bone marrow transplantation. Transplant International, 18: 757-758. doi:10.1111/j.1432-2277.2005.00135.x

Phillips, E. J., Rachlis, A. R., & Ito, S. (2003). Digoxin toxicity and ritonavir: a drug interaction mediated through p-glycoprotein?. AIDS (London, England), 17(10), 1577–1578. https://doi.org/10.1097/01. aids.0000072673.21517.d6

Piliero, Peter. (2002). Interaction between ritonavir and statins. The American Journal of Medicine. 112. 510-1. 10.1016/S0002-9343(02)01034-3.

Samarendra, P., Kumari, S., Evans, S. J., Sacchi, T. J., & Navarro, V. (2001). QT prolongation associated with azithromycin/amiodarone combination. Pacing and clinical electrophysiology : PACE, 24(10), 1572–1574. https://doi.org/10.1046/j.1460-9592.2001.01572.x

Sheikhbahaie, F., Amini, M., Gharipour, M., Aminoroaya, A., & Taheri, N. (2016). The effect of hydroxychloroquine on glucose control and insulin resistance in the prediabetes condition. Advanced Biomedical Research, 5, 145. https://doi.org/10.4103/2277-9175.187401 UCSF. (2019). HIV InSite. Accessed Mei 28, 2020, from UCSF: http://arv.ucsf.edu/insite?page=ar-00- 02&post=10¶m=12.

Wondafrash, D. Z., Desalegn, T. Z., Yimer, E. M., Tsige, A. G., Adamu, B. A., & Zewdie, K. A. (2020). Potential effect of hydroxychloroquine in diabetes mellitus: A systematic review on preclinical and clinical trial studies. Journal of Diabetes Research, 2020, 5214751. https:// doi.org/10.1155/2020/5214751.

WorldHealthOrganization.(2020,April27).WHO Timeline-COVID-19. Accessed Mei 21, 2020, from WHO.int: https://www.who.int/news-room/detail/27- 04-2020-who-timeline---covid-19.

Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA, 10.1001/ jama.2020.2648. Advance online publication. https:// doi.org/10.1001/jama.2020.2648.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.