Abstract
Coronavirus disease 2019 (COVID-19) is the disease caused by the highly transmittable novel coronavirus (SARS-CoV-2) infections. The disease was found at the end of December 2019, in Wuhan, China, and quickly spread worldwide with a higher mortality rate compared to the previous coronavirus disease. Cytokine plays an important role in the inflammatory response against coronavirus infection. However, in severely ill patients with COVID-19, an excessive amount of cytokine serum level (cytokine storm) has been associated with the aggravation of coronavirus disease leading to acute respiratory distress syndrome (ARDS). Thus, the management of the cytokine storm could be the key to stop COVID-19 progression. This article reviews an overview related to SARS-CoV-2 and COVID-19, mechanism and prospective treatment strategies for cytokine storm in COVID-19, and a viewpoint of stem cells perspective. The purpose is to provide some information that could be useful for future guidelines in the clinical management of COVID-19.
References
Akimoto, K., Kimura, K., Nagano, M., Takano, S., Salazar, G. T., Yamashita, T., & Ohneda, O. (2013). Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells and Development, 22(9), 1370-1386. doi:10.1089/scd.2012.0486.
Alten, R. (2011). Tocilizumab: a novel humanized anti- interleukin 6 receptor antibody for the treatment of patients with rheumatoid arthritis. Therapeutic Advances in Musculoskeletal Disease, 3(3), 133-149.
Arabi, Y. M., Mandourah, Y., Al-Hameed, F., Sindi, A. A., Almekhlafi, G. A., Hussein, M. A., . . . Fowler, R. A. (2018). Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome. American Journal of Respiratory and Critical Care Medicine, 197(6), 757-767. doi:10.1164/rccm.201706-1172OC
Aziz, M., Fatima, R., & Assaly, R. (2020). Elevated interleukin-6 and severe COVID-19: A meta-analysis. Journal of Medical Virology. doi:10.1002/jmv.25948
Berthelot, J. M., & Liote, F. (2020). COVID-19 as a STING disorder with delayed over-secretion of interferon-beta. EBioMedicine, 56, 102801. doi:10.1016/j.ebiom.2020.102801
Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W. C., Uhl, S., Hoagland, D., Møller, R., . . . tenOever, B. R. (2020). Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell, 181(5), 1036-1045. e1039. doi:10.1016/j.cell.2020.04.026
Channappanavar, R., Fehr, A. R., Vijay, R., Mack, M., Zhao, J., Meyerholz, D. K., & Perlman, S. (2016). Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe, 19(2), 181-193. doi:10.1016/j.chom.2016.01.007
Chen, L., Liu, H. G., Liu, W., Liu, J., Liu, K., Shang, J., . . . Wei, S. (2020). [Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia]. Zhonghua Jie He He Hu Xi Za Zhi, 43(3), 203-208. doi:10.3760/cma.j.issn.1001-0939.2020.03.013
Cheung, C. Y., Poon, L. L., Ng, I. H., Luk, W., Sia, S. F., Wu, M. H., . . . Peiris, J. S. (2005). Cytokine responses in severe acute respiratory syndrome coronavirus- infected macrophages in vitro: possible relevance to pathogenesis. Journal of Virology, 79(12), 7819-7826. doi:10.1128/JVI.79.12.7819-7826.2005
Chousterman, B. G., Swirski, F. K., & Weber, G. F. (2017). Cytokine storm and sepsis disease pathogenesis. Seminars in Immunopathology, 39(5), 517-528. doi:10.1007/s00281-017-0639-8
Chrzanowski, W., Kim, S. Y., & McClements, L. (2020). CanstemcellsbeatCOVID-19:Advancingstemcells and extracellular vesicles toward mainstream medicine for lung injuries associated with SARS-CoV-2 infections. Frontiers in Bioengineering and Biotechnology, 8(554). doi:10.3389/fbioe.2020.00554
Dinarello, C. A. (1997). Interleukin-1. Cytokine & Growth Factor Reviews, 8(4): 253-265.
Dominici, M., Le Blanc, K., Mueller, I., Slaper- Cortenbach, I., Marini, F. C., Krause, D. S., . . . Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317. doi:10.1080/14653240600855905
England, J. T., Abdulla, A., Biggs, C. M., Lee, A. Y. Y., Hay, K. A., Hoiland, R. L., . . . Chen, L. Y. C. (2020). Weathering the COVID-19 storm: Lessons from hematologic cytokine syndromes. Blood Reviews, 100707.
Gao, F., Chiu, S. M., Motan, D. A. L., Zhang, Z., Chen, L., Ji, H. L., . . . Lian, Q. (2016). Mesenchymal stem cells and immunomodulation: Current status and future prospects. Cell Death & Disease, 7(1), e2062-e2062. doi:10.1038/cddis.2015.327
George, M. J., Prabhakara, K., Toledano-Furman, N. E., Wang, Y.-W., Gill, B. S., Wade, C. E., . . . Cox Jr., C. S. (2018). Clinical cellular therapeutics accelerate clot formation. STEM CELLS Translational Medicine, 7(10), 731-739. doi:10.1002/sctm.18-0015
Guan, W.-j., Ni, Z.-y., Hu, Y., Liang, W.-h., Ou, C.-q., He, J.-x., . . . Zhong, N.-s. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine, 382(18), 1708-1720. doi:10.1056/ NEJMoa2002032
Hachim, A., Kavian, N., Cohen, C. A., Chin, A. W., Chu, D. K., Mok, C. K. P., . . .Valkenburg, S. A. (2020). Beyond the spike: identification of viral targets of the antibody response to SARS-CoV-2 in COVID-19 417 patients. MedRxiv, 20085670.
Hamming, I., Timens, W., Bulthuis, M., Lely, A., Navis, G., & van Goor, H. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology, 203(2), 631-637. doi:10.1002/ path.1570
Henderson, L. A., Canna, S. W., Schulert, G. S., Volpi, S., Lee, P. Y., Kernan, K. F., . . . Nigrovic, P. A. (2020). On the alert for cytokine storm: Immunopathology in COVID-19. Arthritis & Rheumatology, n/a(n/a). doi:10.1002/art.41285
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., . . . Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271-280.e278. doi:https://doi. org/10.1016/j.cell.2020.02.052
Hofmann, H., & Pöhlmann, S. (2004). Cellular entry of the SARS coronavirus. Trends in Microbiology, 12(10), 466-472. doi:10.1016/j.tim.2004.08.008
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., . . . Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497-506. doi:10.1016/S0140- 6736(20)30183-5
Huang, R., Zhu, L., Xue, L., Liu, L., Yan, X., Wang, J., . . . Wu, C. (2020). Clinical findings of patients with coronavirus disease 2019 in Jiangsu province, China: A retrospective, multi-center study. PLOS Neglected Tropical Diseases, 14(5), e0008280. doi:10.1371/ journal.pntd.0008280
Jiang, W., & Xu, J. (2020). Immune modulation by mesenchymal stem cells. Cell Proliferation, 53(1), e12712. doi:10.1111/cpr.12712
Kimura, K., Nagano, M., Salazar, G. T., Yamashita, T., Tsuboi, I., Mishima, H., . . . Ohneda, O. (2014). The role of CCL5 in the ability of adipose tissue-derived mesenchymal stem cells to support repair of ischemic regions. Stem Cells and Development, 23(5), 488-501. doi:10.1089/scd.2013.0307
Konno, Y., Kimura, I., Uriu, K., Fukushi, M., Irie, T., Koyanagi, Y., . . . Sato, K. SARS-CoV-2 ORF3b is a potent interferon antagonist whoose activity is further increased by a naturally occuring elongation variant. MedRxiv, 088179.
Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents, 55(3), 105924. doi:10.1016/j.ijantimicag.2020.105924
Lau, S. K. P., Lau, C. C. Y., Chan, K. H., Li, C. P. Y., Chen, H., Jin, D. Y., . . . Yuen, K. Y. (2013). Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. Journal of General Virology, 94(Pt 12), 2679-2690. doi:10.1099/vir.0.055533-0
Law, H. K., Cheung, C. Y., Ng, H. Y., Sia, S. F., Chan, Y. O., Luk, W., . . . Lau, Y. L. (2005). Chemokine up- regulation in SARS-coronavirus-infected, monocyte- derived human dendritic cells. Blood, 106(7), 2366- 2374. doi:10.1182/blood-2004-10-4166
Leng, Z., Zhu, R., Hou, W., Feng, Y., Yang, Y., Han, Q., . . . Zhao, R. C. (2020). Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging and disease, 11(2), 216-228. Retrieved from http://www. aginganddisease.org
Liu, B., Li, M., Zhou, Z., Guan, X., & Xiang, Y. (2020).Canweuseinterleukin-6(IL-6)blockadefor coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? Journal of Autoimmunity, 111, 102452.
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., . . . Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224), 565-574. doi:10.1016/S0140-6736(20)30251-8
Luo, P., Liu, Y., Qiu, L., Liu, X., Liu, D., & Li, J. (2020). Tocilizumab treatment in COVID-19: A single center experience. Journal of Medical Virology, 92(7), 814-818.
Luo, W., Li, Y.-X., Jiang, L.-J., Chen, Q., Wang, T., & Ye, D.-W. (2020). Targeting JAK-STAT signaling to control cytokine release syndrome in COVID-19. Trends in Pharmacological Sciences. doi:10.1016/j. tips.2020.06.007
McCarty, D., & Robinson, A. (2018). Efficacy and safety of sarilumab in patients with active rheumatoid arthritis. Therapeutic Advances in Musculoskeletal Disease, 10(3), 61-67.
McGonagle, D., Sharif, K., O’Regan, A., & Bridgewood, C. (2020). The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmunity Reviews, 19(6), 102537.
Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., & Manson, J. J. (2020). COVID-19: Consider cytokine storm syndromes and immunosuppression. The Lancet, 395(10229), 1033- 1034.
Moll, G., Ankrum, J. A., Kamhieh-Milz, J., Bieback, K., Ringdén, O., Volk, H.-D., . . . Reinke, P. (2019). Intravascular mesenchymal stromal/stem cell therapy productdiversification:Timefornewclinicalguidelines. Trends in Molecular Medicine, 25(2), 149-163. doi:https://doi.org/10.1016/j.molmed.2018.12.006
Moll, G., Drzeniek, N., Kamhieh-Milz, J., Geissler, S., Volk, H.-D., & Reinke, P. (2020). MSC therapies for COVID-19: Importance of patient coagulopathy, thromboprophylaxis, cell product quality and mode of delivery for treatment safety and efficacy. Frontiers in Immunology, 11(1091). doi:10.3389/fimmu.2020.01091
Narayanan, K., Huang, C., Lokugamage, K., Kamitani, W., Ikegami, T., Tseng, C. T., & Makino, S. (2008). Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. Journal of Virology, 82(9), 4471-4479. doi:10.1128/JVI.02472-07
National Institutes of Health. (2020). COVID-19 treatment guidelines panel. Coronavirus disease 2019 (COVID-19) treatment guidelines. National Institutes of Health. Retrieved from https://www. covid19treatmentguidelines.nih.gov/ .
Ni, Y. N., Chen, G., Sun, J., Liang, B. M., & Liang, Z. A. (2019). The effect of corticosteroids on mortality of patients with influenza pneumonia: a systematic review and meta-analysis. Critical Care, 23(1), 99.
Park, A., & Iwasaki, A. (2020). Type I and Type III Interferons - Induction, Signaling, Evasion, and Application to Combat COVID-19. Cell Host Microbe, 27(6), 870-878. doi:10.1016/j.chom.2020.05.008
Pittenger, M. F., Discher, D. E., Péault, B. M., Phinney, D. G., Hare, J. M., & Caplan, A. I. (2019). Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regenerative Medicine, 4(1), 22. doi:10.1038/ s41536-019-0083-6
Rice, J. B., White, A. G., Scarpati, L. M., Wan, G., & Nelson, W. W. (2017). Long-term systemic corticosteroid exposure: A systematic literature review. Clinical Therapeutics, 39(11), 2216-2229.
Russell, C. D., Millar, J. E., & Baillie, J. K. (2020). Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. The Lancet, 395(10223), 473-475.
Sanders, J. M., Monogue, M. L., Jodlowski, T. Z., & Cutrell, J. B. (2020). Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA, 323(18), 1824-1836.
Sengupta, V. S., Vikram; Lazo, Angel; Woods, Peter; Nolan,Anna and Bremer, Nicholas (2020). Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells and Development, 29(12), 747-754. doi:10.1089/ scd.2020.0080
Shakoory, B., Carcillo, J. A., Chatham, W. W., Amdur, R. L., Zhao, H., Dinarello, C. A., . . . Opal, S. M. (2016). Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: Reanalysis of a prior phase III trial. Critical Care Medicine, 44(2), 275-281.
Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91-98. doi:10.1016/j. jare.2020.03.005
Shimabukuro-Vornhagen, A., Gödel, P., Subklewe, M., Stemmler, H. J., Schlößer, H. A., Schlaak, M., . . . von Bergwelt-Baildon, M. S. (2018). Cytokine release syndrome. Journal for Immunotherapy of Cancer, 6(1), 56. doi:10.1186/s40425-018-0343-9
Singhal, T. (2020). A review of coronavirus disease-2019 (COVID-19). Indian Journal of Pediatrics, 87(4), 281- 286. doi:10.1007/s12098-020-03263-6
Song, P., Li, W., Xie, J., Hou, Y., & You, C. (2020). Cytokine storm induced by SARS-CoV-2. Clinica Chimica Acta, 509, 280-287. doi:10.1016/j. cca.2020.06.017
Sun, L., Louie, M. C., Vannella, K. M., Wilke, C. A., LeVine, A. M., Moore, B. B., & Shanley, T. P. (2011). New concepts of IL-10-induced lung fibrosis: fibrocyte recruitment and M2 activation in a CCL2/CCR2 axis. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 300(3), L341-353.
Sun, X., Wang, T., Cai, D., Hu, Z., Chen, J., Liao, H., . . . Wang, A. (2020). Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine & Growth Factor Reviews, 53, 38-42. doi:10.1016/j. cytogfr.2020.04.002
Tang, C., Wang, Y., Lv, H., Guan, Z., & Gu, J. (2020). Caution against corticosteroid-based COVID-19 treatment. The Lancet, 395(10239), 1759-1760.
Tisoncik, J. R., Korth, M. J., Simmons, C. P., Farrar, J., Martin, T. R., & Katze, M. G. (2012). Into the eye of the cytokine storm. Microbiology and Molecular Biology Reviews, 76(1), 16-32.
U.S. National Library of Medicine. (2020). Retrieved from https://clinicaltrials.gov
van Niel, G., D’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 19(4), 213-228. doi:10.1038/nrm.2017.125
Wang, H., & Ma, S. (2008). The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. American Journal of Emergency Medicine, 26(6), 711- 715. doi:10.1016/j.ajem.2007.10.031
Wang, J., Jiang, M., Chen, X., & Montaner, L. J. (2020). Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. Journal of Leukocyte Biology. doi:10.1002/jlb.3covr0520-272r
Wathelet, M. G., Orr, M., Frieman, M. B., & Baric, R. S. (2007). Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. Journal of Virology, 81(21), 11620-11633. doi:10.1128/JVI.00702-07
World Health Organization. (2020). Coronavirus disease (COVID-19): Situation report - 147. Retrieved from https://www.who.int/emergencies/diseases/novel- coronavirus-2019/situation-reports
Ye, Q., Wang, B., & Mao, J. (2020). The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. Journal of Infection, 80(6), 607-613.
Zhang, C., Wu, Z., Li, J. W., Zhao, H., & Wang, G. Q. (2020). Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. International Journal of Antimicrobial Agents, 55(5), 105954.
Zheng, G., Huang, L., Tong, H., Shu, Q., Hu, Y., Ge, M., . . . Xu, J. (2014). Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respiratory Research, 15(1), 39. doi:10.1186/1465- 9921-15-39
Zhong, J., Tang, J., Ye, C., & Dong, L. (2020). The immunology of COVID-19: is immune modulation an option for treatment? The Lancet Rheumatology. doi:10.1016/S2665-9913(20)30120-X
Recommended Citation
Azmi, Nuriza Ulul; Puteri, Meidi Utami; and Lukmanto, Donny
(2020)
"Cytokine Storm in COVID-19: An Overview, Mechanism, Treatment Strategies, and Stem Cell Therapy Perspective,"
Pharmaceutical Sciences and Research: Vol. 7:
No.
4, Article 1.
DOI: 10.7454/psr.v7i4.1092
Available at:
https://scholarhub.ui.ac.id/psr/vol7/iss4/1
Included in
Medical Pharmacology Commons, Other Pharmacy and Pharmaceutical Sciences Commons, Respiratory Tract Diseases Commons, Virus Diseases Commons