Abstract
The world seems to be recovering at this time, especially because of the 2019 global coronavirus disease pandemic (COVID-19) caused by the Coronavirus 2 virus (SARS-CoV-2). This virus is similar to other β-coronaviruses through several steps to enter and bind angiotensin-converting enzyme 2 (ACE2) as the main receptor. This binding, particularly in the respiratory epithelium and alveoli of the lungs, affects harmony in human host cells. No specific vaccines and antivirals are available to date as drug investigations are still ongoing. However, many Indonesians consume herbal medicine, especially 'empon-empon' containing the Zingiberaceae family, to protect their health from COVID-19. So far, herbal medicine has shown good results to protect the Indonesian people in fighting SARS-CoV-2 empirically. In this review, we describe the characteristics of SARS-CoV-2, herbal ingredients that are active in fighting COVID-19, and applied nanotechnology challenges to COVID-19. Therefore, it is proposed to develop herbal medicine with a nanotechnology approach to increase the efficacy and potential of herbal medicine in fighting COVID-19. Moreover, the development of nanotechnology for Indonesian jamu will increase the value of Indonesian jamu and raise its reputation in the world.
References
Abd El-Aziz, T. M., & Stockand, J. D. (2020). Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 83, 104327. https://doi.org/10.1016/j.meegid.2020.104327
Ahmed, O. A. A., Badr-Eldin, S. M., Tawfik, M. K., Ahmed, T. A., El-Say, K. M., & Badr, J. M. (2014). Design and optimization of self-nanoemulsifying delivery system to enhance quercetin hepatoprotective activity in paracetamol-induced hepatotoxicity. Journal of Pharmaceutical Sciences, 103(2), 602–612. https://doi.org/10.1002/jps.23834
Borish, L. C., & Steinke, J. W. (2003). 2. Cytokines and chemokines. The Journal of Allergy and Clinical Immunology, 111(2 Suppl), S460–S475. https://doi.org/10.1067/mai.2003.108
Chang, D., Lin, M., Wei, L., Xie, L., Zhu, G., Dela Cruz, C. S., & Sharma, L. (2020). Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside Wuhan, China. JAMA - Journal of the American Medical Association, 323(11), 1092–1093. https://doi.org/10.1001/jama.2020.1623
Chen, Y. N., Hsueh, Y. H., Hsieh, C. Te, Tzou, D. Y., & Chang, P. L. (2016). Antiviral activity of graphene–silver nanocomposites against non-enveloped and enveloped viruses. International Journal of Environmental Research and Public Health, 13(4), 430. https://doi.org/10.3390/ijerph13040430
Cheng, L., Zheng, W., Li, M., Huang, J., Bao, S, Xu, Q., & Ma, Z. (2020). Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2. Preprints 2020, 2020020313
Du, T., Liang, J., Dong, N., Lu, J., Fu, Y., Fang, L., Xiao, S., & Han, H. (2018). Glutathione-Capped Ag2S nanoclusters inhibit coronavirus proliferation through blockage of viral RNA synthesis and budding. ACS Applied Materials & Interfaces, 10(5), 4369–4378. https://doi.org/10.1021/acsami.7b13811
El Zowalaty, M. E., & Järhult, J. D. (2020). From SARS to COVID-19: A previously unknown SARS- related coronavirus (SARS-CoV-2) of pandemic potential infecting humans – Call for a One Health approach. One Health, 9(February), 100124. https://doi.org/10.1016/j.onehlt.2020.100124
Epstein, J., Sanderson, I. R., & MacDonald, T. T. (2010). Curcumin as a therapeutic agent: The evidence from in vitro, animal and human studies. British Journal of Nutrition, 103(11), 1545–1557. https://doi.org/10.1017/S0007114509993667
Fuzimoto, A. D., & Isidoro, C. (2020). The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds - Additional weapons in the fight against the COVID-19 pandemic? Journal of Traditional and Complementary Medicine, 10(4), 405–419. https://doi.org/10.1016/j.jtcme.2020.05.003
Gopi, S., Amalraj, A, Haponluk, J.T., & Thomas, S. (2016). Introduction of nanotechnology in herbal drugs and nutraceutical: A Review. Journal of Nanomedicine & Biotherapeutic Discovery, 6(2), 1–8. https://doi.org/10.4172/2155-983x.1000143
Hu, C. M. J., Chang, W. S., Fang, Z. S., Chen, Y. T., Wang, W. L., Tsai, H. H., Chueh, L. L., Takano, T., Hohdatsu, T., & Chen, H. W. (2017). Nanoparticulate vacuolar ATPase blocker exhibits potent host-targeted antiviral activity against feline coronavirus. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-13316-0
Huang, Y., Yang, C., Xu, X. feng, Xu, W., & Liu, S. wen. (2020). Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 41(9), 1141–1149. https://doi.org/10.1038/s41401-020-0485-4
Islam, M. T., Sarkar, C., El-Kersh, D. M., Jamaddar, S., Uddin, S. J., Shilpi, J. A., & Mubarak, M. S. (2020). Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytotherapy Research : PTR, 34(10), 2471–2492. https://doi.org/10.1002/ptr.6700
Jaimes, J. A., Millet, J. K., & Whittaker, G. R. (2020). Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. IScience, 23(6), 101212. https://doi.org/10.1016/j.isci.2020.101212
James, M. (2015). Natural antibiotics and antivirals: the ultimate guide to natural antibiotics - Homemade herbal remedies that kill pathogens and cure bacterial infections and allergies. Prevent Illness, Cold and Flu. CreateSpace Independent Publishing Platform.
Khanna, K., Kohli, S. K., Kaur, R., Bhardwaj, A., Bhardwaj, V., Ohri, P., Sharma, A., Ahmad, A., Bhardwaj, R., & Ahmad, P. (2020). Herbal immune-boosters: Substantial warriors of pandemic Covid-19 battle. Phytomedicine, 153361. Advance online publication. https://doi.org/10.1016/j.phymed.2020.153361
Kim, M. B., Kim, C., Song, Y., & Hwang, J. K. (2014). Antihyperglycemic and anti-inflammatory effects of standardized Curcuma xanthorrhiza Roxb. Extract and its active compound xanthorrhizol in high-fat diet-induced obese mice. Evidence-Based Complementary and Alternative Medicine, 2014, 205915. https://doi.org/10.1155/2014/205915
Liu, Z., & Ying, Y. (2020). The inhibitory effect of curcumin on virus-induced cytokine storm and its potential use in the associated severe pneumonia. Frontiers in Cell and Developmental Biology, 8, 479. https://doi.org/10.3389/fcell.2020.00479
Moghadamtousi, S. Z., Kadir, H. A., Hassandarvish, P., Tajik, H., Abubakar, S., & Zandi, K. (2014). A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Research International, 2014, 186864. https://doi.org/10.1155/2014/186864
Morawska, L., & Cao, J. (2020). Airborne transmission of SARS-CoV-2: The world should face the reality. Environment International, 139(April), 105730. https://doi.org/10.1016/j.envint.2020.105730
Munster, V. J., Koopmans, M., van Doremalen, N., van Riel, D., & de Wit, E. (2020). A novel coronavirus emerging in China - Key questions for impact assessment. New England Journal of Medicine, 382(8), 692–694. https://doi.org/10.1056/NEJMp2000929
Nandi, D.K., & Mitra, M. (2020). Herbal gold nanoparticles for attenuating pandemic infection of COVID-19 virus. Journal of Nanomedicine & Nanotechnology, 11:547, 9–10. https://doi.org/10.35248/2157-7439.20.11.547
Nikaeen, G., Abbaszadeh, S., & Yousefinejad, S. (2020). Application of nanomaterials in treatment, anti-infection and detection of coronaviruses. Nanomedicine (London, England), 15(15), 1501–1512. https://doi.org/10.2217/nnm-2020-0117
Nugraha, R. V., Ridwansyah, H., Ghozali, M., Khairani, A. F., & Atik, N. (2020). Traditional herbal medicine candidates as complementary treatments for COVID-19: A Review of Their Mechanisms, Pros and Cons. Evidence-Based Complementary and Alternative Medicine, 2020. https://doi.org/10.1155/2020/2560645
Parry, J. (2020). China coronavirus: cases surge as official admits human to human transmission. BMJ (Clinical Research Ed.), 368(January), m236. https://doi.org/10.1136/bmj.m236
Rajagopal, K., Byran, G., Jupudi, S., & Vadivelan, R. (2020). Activity of phytochemical constituents of black pepper, ginger, and garlic against coronavirus (COVID-19): An in silico approach. International Journal of Health & Allied Sciences, 9(5), 43-50
Rathinavel, T., Palanisamy, M., Palanisamy, S., Subramanian, A., & Thangaswamy, S. (2020). Phytochemical 6-Gingerol – A promising Drug of choice for COVID-19. International Journal of Advanced Science and Engineering, 06(04), 1482–1489. https://doi.org/10.29294/ijase.6.4.2020.1482-1489
Riou, J., & Althaus, C. L. (2020). Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance, 25(4), 1–5. https://doi.org/10.2807/1560-7917.ES.2020.25.4.2000058
Riswan, S., & Sangat-Remantyo, H. (2002). Jamu as traditional medicine in Java, Indonesia. In South Paciflc Study, 123 (1), 1-10
Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91–98. https://doi.org/10.1016/j.jare.2020.03.005
Silva, L. M., Hill, L. E., Figueiredo, E., & Gomes, C. L. (2014). Delivery of phytochemicals of tropical fruit by-products using poly (dl-lactide-co-glycolide) (PLGA) nanoparticles: Synthesis, characterization, and antimicrobial activity. Food Chemistry, 165, 362–370.https://doi.org/10.1016/j.foodchem.2014.05.118
Sulistyo, H., Kurniawan, D. W., & Rujito, L. (2017). Biochemical and histopathological effects of green tea nanoparticles in ironized mouse model. Research in Pharmaceutical Sciences, 12(2), 99–106. https://doi.org/10.4103/1735-5362.202448
Vellingiri, B., Jayaramayya, K., Iyer, M., Narayanasamy, A., Govindasamy, V., Giridharan, B., Ganesan, S., Venugopal, A., Venkatesan, D., Ganesan, H., Rajagopalan, K., Rahman, P. K. S. M., Cho, S. G., Kumar, N. S., & Subramaniam, M. D. (2020). COVID-19: A promising cure for the global panic. Science of the Total Environment, 725, 138277. https://doi.org/10.1016/j.scitotenv.2020.138277
Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal of Virology, 94(7), 1–9. https://doi.org/10.1128/jvi.00127-20
Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell, 181(4), 894-904.e9. https://doi.org/10.1016/j.cell.2020.03.045
Watkins, R., Wu, L., Zhang, C., Davis, R., Xu, B. (2015). Natural product-based nanomedicine: recent advances and issues. International Journal of Nanomedicine. 10(1), 6055-6074. https://doi.org/10.2147/IJN.S92162
Xu, J., & Zhang, Y. (2020). Traditional chinese medicine treatment of COVID-19. Complementary Therapies in Clinical Practice, 39, 101165. https://doi.org/10.1016/j.ctcp.2020.101165
Yang, Y., Islam, M. S., Wang, J., Li, Y., & Chen, X. (2020). Traditional chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A Review and Perspective. International Journal of Biological Sciences, 16(10), 1708–1717. https://doi.org/10.7150/ijbs.45538
Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, N.Y.), 367(6485), 1444–1448. https://doi.org/10.1126/science.abb2762
Recommended Citation
Kurniawan, Dhadhang Wahyu and Ikhsanudin, Azis
(2020)
"Potential of Jamu in Nanotechnology Perspective as an Alternative Treatment for Covid-19,"
Pharmaceutical Sciences and Research: Vol. 7:
No.
3, Article 1.
DOI: 10.7454/psr.v7i3.1082
Available at:
https://scholarhub.ui.ac.id/psr/vol7/iss3/1
Included in
Natural Products Chemistry and Pharmacognosy Commons, Other Pharmacy and Pharmaceutical Sciences Commons, Pharmaceutics and Drug Design Commons